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We investigate two effects that lead to a surprising increase in the calculated Casimir-Lifshitz torque
between anisotropic, planar, semi-infinite slabs. Retardation effects, which account for the finite speed of
light, are generally assumed to decrease the strength of Casimir-Lifshitz interactions. However, the
nonretarded approximation underestimates the Casimir-Lifshitz torque at small separations by as much as
an order of magnitude. Also, Casimir-Lifshitz forces are typically weakened with the insertion of an
intervening dielectric. However, a dielectric medium can increase the short-range Casimir-Lifshitz torque
by as much as a factor of 2. The combined effects of retardation and an intervening dielectric dramatically
enhance the Casimir-Lifshitz torque in the experimentally accessible regime and should not be neglected in
calculation or experimental design.
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Quantum and thermal fluctuations of electromagnetic
fields cause a force between uncharged, macroscopic
objects. In 1948, Casimir calculated the attractive force
between two parallel, semi-infinite conductors [1]. This
result was generalized by Lifshitz to include dielectrics and
then by Parsegian and Barash to include anisotropic materi-
als [2–4]. The distance dependence of the free energy of the
confined electromagnetic modes causes a force, and the
angular dependence of the confinedmodes due to geometric
or dielectric anisotropy causes a torque. Although some
efforts are in progress, the Casimir-Lifshitz torque has yet to
be verified experimentally [5–10].
At small separations, the Casimir-Lifshitz effect is

equivalent to a van der Waals interaction. The connection
between the Casimir-Lifshitz and van der Waals formula-
tions is summarized in a recent review by Woods [11]. The
van der Waals free energy per unit area between two
optically isotropic, planar dielectrics is often written in
terms of a Hamaker constant A0, as ΩðdÞ ¼ −A0=12πd2.
To account for the finite speed of light, the Hamaker
constant becomes a distance-dependent Hamaker coeffi-
cient in the Casimir-Lifshitz formulation, resulting in a free
energy per unit area given by ΩðdÞ ¼ −AðdÞ=12πd2. The
Hamaker coefficient reduces to the Hamaker constant at
short ranges [12,13]. This distance dependence encodes the
effect of retardation, or the finite speed of light. Retardation
weakens Casimir-Lifshitz interactions between isotropic
slabs, and AðdÞ decays from A0 to 0 as d increases. For two
birefringent plates, the Hamaker coefficient depends on the
relative angle between the plates, resulting in an angular
dependence of the free energy per unit area:

Ωðd; θÞ ¼ −
Aðd; θÞ
12πd2

; ð1Þ

and hence a torque per unit areaMðd; θÞ arises between the
two materials:

Mðd; θÞ ¼ −
∂Ωðd; θÞ

∂θ : ð2Þ

For small separations, the anisotropic vanderWaals torque
is thought to act as an alignment mechanism for nematic
liquid crystals [14]. While there have been a few qualitative
experiments to explore this phenomenon [15–18], there have
been no quantitative measurements and little theoretical
exploration of the effects of retardation.
In this Letter, we explore the effect of retardation on the

Casimir-Lifshitz torque and find two surprising situations
that lead to an enhancement of the torque. The geometry of
the system is shown in the inset in Fig. 1, and the two
effects in question are apparent in the plotted torques per
unit area between parallel TiO2 slabs at a separation of
30 nm. First, we demonstrate that the anisotropic part of the
Hamaker coefficient (corresponding to the Casimir-Lifshitz
torque) between semi-infinite dielectric slabs is generally
increased by retardation at small separations. For common
birefringent crystals such as TiO2, the enhancement is most
prominent when the slabs are separated by tens of nano-
meters. As a result, the calculated torque is significantly
greater when retardation effects are included than when
they are neglected. Furthermore, we demonstrate that the
insertion of a dielectric medium can increase the Casimir-
Lifshitz torque at small separations. We demonstrate that
common dielectric materials (such as liquids with optical
refractive indices near 1.5) can increase the calculated
Casimir-Lifshitz torque between TiO2 slabs by as much as
a factor of 2. This effect persists throughout the exper-
imentally accessible regime of separations on the order of
1–100 nm.
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Heuristically, we can describe this effect by noting that
the Casimir-Lifshitz torque depends on the relative ori-
entation of the two plates. Even if the strength of the
Casimir-Lifshitz interaction Ωðd; θÞ is decreased for all θ
by inserting a dielectric medium, it may be decreased more
for θ ¼ π=2 than for θ ¼ 0. As a result, the energy
difference between the two orientations is increased, which
corresponds to an enhancement of the torque.
As a result of these two effects, the calculated Casimir-

Lifshitz torque can be greatly increased when retardation
effects and intervening dielectric media are included. The
enhancement of the torque by retardation implies that
calculations that neglect retardation should be reexamined,
as they may significantly underestimate the torque. A
similar retardation effect was predicted for the Casimir-
Lifshitz force in special cases involving systems with thin
metallic films [19] or high anisotropy [20,21]. The
enhancement of the torque by insertion of a dielectric
implies that an intermediate dielectric may be helpful in
experiments designed to measure the Casimir-Lifshitz
torque. To our knowledge, there is no analogous effect
for the Casimir-Lifshitz force. Together, these results open
new venues for the manipulation of fluctuation forces at the
nanoscale and have major implications for the design of
Casimir-Lifshitz torque experiments.
We consider a system of two parallel, semi-infinite, half-

spaces of birefringent materials separated by distance d, as
shown in the inset in Fig. 1. The materials have their optic
axes in the xy plane but are rotated by an angle θ relative to
each other. The Hamaker coefficient Aðd; θÞ can be split
into isotropic and anisotropic parts Að0ÞðdÞ and Að2ÞðdÞ,
respectively:

Aðd; θÞ ≈ Að0ÞðdÞ þ Að2ÞðdÞ cos ð2θÞ: ð3Þ

The cosinelike dependence in Eq. (3) is valid for materials
with small birefringence. We define the isotropic and ani-
sotropic parts of the Hamaker coefficient as in Ref. [20]:
Að0ÞðdÞ ¼ Aðd; π=4Þ and Að2ÞðdÞ ¼ Aðd; π=2Þ − Aðd; 0Þ.
The Casimir-Lifshitz torque is then approximated by

Mðd; θÞ ≈ −
Að2ÞðdÞ sin ð2θÞ

6πd2
: ð4Þ

The effects of retardation on the Casimir-Lifshitz torque are
encoded in Að2ÞðdÞ.
At a finite temperature, the Casimir-Lifshitz free energy is

a sum over Matsubara frequencies ξn ¼ n2πkBT=ℏ (where
T is the temperature of the system, 298 K in this work):

Ωðd; θÞ ¼ kBT
4π2

X∞

n¼0

0
Z

∞

0

rdr
Z

2π

0

dφ lnDnðr;φÞ; ð5Þ

where r and φ are the radial and azimuthal components,
respectively, of a wave vector and Dnðr;φÞ ¼ 0 represents
the dispersion condition for surfacemodes between the slabs
[4,22]. With a substitution of the dimensionless χ ¼ rd, the
retarded Hamaker coefficient can be written as a sum of
contributions at the Matsubara frequencies:

Aðd; θÞ ¼
X∞

n¼0

0Anðd; θÞ; ð6aÞ

Anðd; θÞ ¼ −
3kBT
π

Z
∞

0

χdχ
Z

2π

0

dφ lnDnðχ;φÞ: ð6bÞ

To examine the effects of retardation, we consider the
dependence of a single Matsubara term Anðd; θÞ on the
dimensionless rn ¼ 2

ffiffiffiffiffi
ε3

p
ξnd=c. Physically, rn is the ratio of

round-trip travel time for light between the plates (2
ffiffiffiffiffi
ε3

p
d=c)

to the characteristic decay time of the Matsubara frequency
(1=ξn) [12]. Therefore, rn is a measure of retardance: as
d=c → 0, rn → 0. The contribution from a Matsubara term
depends only on rn and the dielectric properties at the
corresponding imaginary frequency ξn. Each Matsubara
term is split into isotropic and anisotropic terms as

above: Að0Þ
n ðrnÞ¼Anðrn;π=4Þ and Að2Þ

n ðrnÞ¼Anðrn;π=2Þ−
Anðrn;0Þ. By isolatingAð2Þ

n ðrnÞ, we can examine the effect of
retardation on individual Matsubara terms that contribute to
the Casimir-Lifshitz torque.
Following the notation of Refs. [20,21], we define the

anisotropy of the ith material as

δi⊥ ¼ εi⊥ − ε3
ε3

; δi∥ ¼
εi∥ − ε3

ε3
; ð7Þ

where ε is the dielectric function evaluated at imaginary
frequency iξ. As in Ref. [20], we expand the integrand of
Eq. (6b) for small δi⊥ and δi∥ to second order (there is no

FIG. 1. Casimir-Lifshitz torque per unit area between two TiO2

slabs separated by 30 nm of vacuum (black curves) or water
(green curves). In the nonretarded approximation (dashed
curves), the Casimir-Lifshitz torque reduces to the van der Waals
torque. The calculated torque is increased by the intervening
dielectric as well as by retardation effects. Inset: Geometry of the
system in question.
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zeroth- or first-order contribution). The integration over
wave vectors is carried out analytically with the use of the
exponential integral EiðxÞ ¼ −

R∞
−xðe−t=tÞdt:

Anðrn; θÞ ¼ Að0Þ
n ðrnÞ þ Að2Þ

n ðrnÞ cos ð2θÞ þ � � � ; ð8aÞ

Að2Þ
n ðrnÞ ¼

3kBT
256

ðδ1∥ − δ1⊥Þðδ2∥ − δ2⊥ÞζðrnÞ; ð8bÞ

where

ζðrnÞ ¼
1

2
½e−rnð−r3n þ r2n þ 2rn þ 2Þ

− Eið−rnÞðr4n þ 4r2nÞ�: ð9Þ

To second order in δi⊥ and δi∥, the cosð2θÞ dependence is
exact. The Að0Þ

n ðrnÞ term is independent of θ and does not
contribute to the torque. In the nonretarded limit,
ζðrn → 0Þ ¼ 1, Eq. (8b) reduces to

Að2Þ
n;NR ¼ 3kBT

256
ðδ1∥ − δ1⊥Þðδ2∥ − δ2⊥Þ: ð10Þ

Now we examine the dependence of Að2Þ
n ðrnÞ on rn, which is

wholly contained within ζðrnÞ [Eq. (9)]. This function
is plotted in Fig. 2. The nonmonotonicity of ζðrnÞ is surpris-
ing—it implies that, for small values of rn, the contribution of
a single Matsubara term to the Casimir-Lifshitz torque is
increased by retardation. We can make an even stronger
claim: For small d, the total Casimir-Lifshitz torque is also
increased by retardation. This is because, for real materials, a
finite number of Matsubara terms contribute to Casimir-
Lifshitz interactions (all materials become optically trans-
parent as ξ → ∞). As the distance between two materials
approaches 0, the set of rn’s corresponding to this finite set of
Matsubara terms will fall in the retardation-enhancement

region where rn ≲ 1.82 and ζðrnÞ > 1. This means that the
sum ofMatsubara terms will also be enhanced by retardation
in this limit. Therefore, for small separations and small
birefringence, retardation will generally cause an increase
in the Casimir-Lifshitz torque.
This calculation is to second order in δi;⊥ and δi;∥, but for

materials with higher anisotropy (such as those chosen to
maximize the Casimir-Lifshitz torque) the approximation is
less accurate. However, this nonmonotonicity persists in the
analytic expansion to third order in δi⊥ and δi∥ as well.
Furthermore, a numerical exploration of the parameter
space shows that all combinations of dielectric constants
produce a nonmonotonic dependence on rn of the aniso-
tropic part of the Hamaker coefficient. To demonstrate the
generality of this effect, we calculate the anisotropic part of
the Casimir-Lifshitz interaction for two BaTiO3 slabs
(strong birefringence), two TiO2 slabs, and one BaTiO3

and one TiO2 slab in Fig. 3. The material dispersions in this
Letter are modeled using the parameters from Refs. [23,24].

The anisotropic part of the Hamaker coefficient Að2Þ
n ðdÞ is

plotted for these material combinations in Fig. 3(a). The

nonmonotonicity of Að2Þ
n ðdÞ and the increase due to the

inclusion of water is clear. The effect of retardation is even
clearer in Fig. 3(b), which plots the ratio of the full
calculation to the nonretarded approximation: The full
calculation yields a torque several times stronger than
the nonretarded calculation (by nearly a factor of 12).
When the plates are separated by ≈30 nm, the calculated
torque is typically ≳50% stronger when retardation effects
are included. However, the magnitude of the enhancement
is highly dependent on the choice of birefringent material.
Retardation effects are always an experimental reality, so

the difference between the nonretarded and full calculations
cannot be measured. However, one could choose to include
an intervening dielectric medium between two birefringent
materials. This addition modifies the dispersion relation
Dnðr;φÞ in Eq. (5), which can significantly increase the
Casimir-Lifshitz torque. Figures 3(a) and 3(c) show the
effect of filling the vacuum gap with water, which causes a
significant increase in the torque over a broad range of
separations.
We examine the effect of the intervening dielectric in

more detail by comparing Að2ÞðdÞ for two TiO2 slabs
separated by a vacuum and several distinct fluids in
Fig. 4. The inclusion of dielectrics with higher refractive
indices at optical frequencies (which dominate short-range
Casimir-Lifshitz interactions) results in higher Casimir-
Lifshitz torques at small separations. In fact, torques are
enhanced for most experimentally accessible separations
(≈75 nm for these materials—beyond this separation, the
torques are extremely weak). For d≲ 100 nm, the torque is
also enhanced by retardation effects. Beyond this point,
retardation effects weaken the torque (affecting the systems
with dielectric media the most). At very large separations at

FIG. 2. For small birefringence, the contributions of Matsubara
terms to the anisotropic part of the Hamaker coefficient (and
therefore the Casimir-Lifshitz torque), which is proportional to
ζðrnÞ, are increased by retardation at small separations.
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room temperature, only the n ¼ 0 Matsubara term con-
tributes—this term is dominated by thermal fluctuations
and is not affected by retardation [12,13]. Therefore, the
same torque enhancement seen at short ranges reappears for
three of the materials for d > 2 μm. The dc dielectric
constant for water, however, is so high that the long-range
torque is reduced instead of enhanced. We note that the
Casimir-Lifshitz torque at separations greater than a micron
may be too small to measure in currently proposed experi-
ments when a dielectric medium is introduced. At a
separation of d ¼ 30 nm, the maximum nonretarded torque
between the plates across a vacuum is 3.6 × 10−10 Nm=m2.
This is increased by a factor of 1.9 when retardation effects
are included and by a factor of 2.2 when retardation effects
and an intervening diiodomethane medium are included.
Although intervening media can cause other experimental
difficulties, a large increase in the torque may represent a
worthwhile trade-off.
In Fig. 5, we calculate how the nonretarded torque is

affected, more generally, by a dielectric medium. The
torque is increased by inserting a medium with a dielectric

FIG. 3. The effects of retardation and insertion of a water layer
on the anisotropic part of the Casimir-Lifshitz energy. (a) Aniso-
tropic part of the Hamaker coefficient for three material combi-
nations (BaTiO3-BaTiO3, BaTiO3-TiO2, and TiO2-TiO2 in black,
blue, and orange, respectively) when the materials are separated
by a vacuum (solid curves) and water (dashed curves). (b) Ratio
of the anisotropic part of Hamaker coefficients with retardation
effects to the nonretarded approximation. (c) Ratio of the
anisotropic part of Hamaker coefficients for materials separated
by water to those separated by a vacuum. For d≲ 90 nm, the
torque is enhanced by retardation and by the intervening water for
all three material combinations.

(a)

(b)

FIG. 4. (a) The combined effects of retardation and an inter-
vening dielectric media on the anisotropy of Casimir-Lifshitz free
energy between two parallel slabs of TiO2. The anisotropic part
of the Hamaker coefficient is increased by these two effects for
d≲ 100 nm. (b) The effects of the intervening dielectric media
are isolated by scaling Að2ÞðdÞ to the value when the plates are
separated by a vacuum. At small separations (d < 50 nm), the
liquids with higher optical refractive indices cause the greatest
increase in the torque. At very large separations (d > 50 μm), the
n ¼ 0 Matsubara term dominates, so only the dc dielectric
constant is relevant.

FIG. 5. Each Matsubara term contributes Að2Þ
n;NR to the

anisotropy of the Casimir-Lifshitz interaction. For two identical

birefringent slabs, the ε3 that maximizes Að2Þ
n;NR (and therefore the

Casimir-Lifshitz torque) is between ε⊥ and ε∥.
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function somewhere between ε⊥ and ε∥ of the birefringent
material. For a given choice of ε⊥ and ε∥, ε3 ¼ 1 does not
typically maximize the torque. For example, with ε⊥ ¼
5.81 and ε∥ ¼ 6.62 (as for the dc dielectric terms of TiO2),
the optimal ε3 is about 6. In this case, the contribution to the
Casimir-Lifshitz torque is nearly tripled by the insertion of
such a dielectric (compared to a vacuum).
The distance dependence of Casimir-Lifshitz interactions

is further complicated by retardation screening of high-
frequency contributions at larger separations. The interplay
of dielectric functions can lead to a rich variety of unusual
effects, as demonstrated in Refs. [25,26]. However, we
emphasize that the effects we demonstrate here are distinct
from those that rely on particular combinations of dielectric
materials. The torque enhancement by retardation is inde-
pendent of dielectric functions, and the enhancement by the
inclusion of a dielectric medium is quite general and appears
even in the nonretarded calculation.
In this Letter, we have shown that, at short distances,

the Casimir-Lifshitz torque between parallel slabs is
increased by retardation. The nonretarded approximation
can underestimate the torque by as much as an order of
magnitude. This is the case even at separations on the order
of 10 nm, a regime in which retardation effects are often
ignored. Furthermore, an intervening dielectric medium
often increases the Casimir-Lifshitz torque by a significant
amount. A carefully selected dielectric liquid can make the
torque stronger and more experimentally accessible. We
encourage researchers to include the effects of retardation
and an intervening medium, as they may make measure-
ments realizable in surprising conditions.
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