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Conditions for repulsive Casimir forces between identical birefringent materials
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Repulsive Casimir-Lifshitz forces are known to exist between two dissimilar materials if a third material, whose
dielectric response is intermediate, separates them. However, the force between two identical materials is almost
always attractive. Here we show that the force between two identical, semi-infinite birefringent slabs can be
repulsive for particular orientations and compare the conditions for repulsion in this system to those of isotropic
materials. We examine the dependence of the Casimir-Lifshitz force on retardation and relative orientation in
this system and discuss situations in which the force can be changed from attractive to repulsive as a function of
both distance and rotation angle.
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I. INTRODUCTION

Since its original derivation in 1948 [1], the Casimir effect
has been the subject of many experimental and theoretical
investigations. The original paper predicted an attractive force
between perfect conductors separated by vacuum, but the result
has been generalized to include more complicated materials
and geometries [2–5]. In particular, Barash calculated the force
and torque experienced by two semi-infinite anisotropic mate-
rials separated by a dielectric medium [4]. There have been
many experiments that confirm predictions from Lifshitz’s
theory [6–11], and several experiments have been proposed
to measure the torque between anisotropic materials [12–16].

Because attractive Casimir-Lifshitz forces can cause stic-
tion in microelectromechanical system (MEMS) or nanoelec-
tromechanical system (NEMS) devices [17], there has been
significant effort to engineer systems that exhibit Casimir-
Lifshitz repulsion. So far, repulsion has only been measured
between two dissimilar materials separated by a third material
which has a dielectric response intermediate to the other
materials [7,18]. Some theoretical works have proposed other
systems that could exhibit Casimir repulsion. The most com-
mon approach among these includes metamaterials with strong
magnetic responses at optical frequencies, such as in [19–21].
Rosa et al. considered uniaxial out-of-plane metamaterials
(among other anisotropic materials), but focused on planar
systems separated by vacuum [22]. These systems all require
at least one of the plates to have a strong magnetic response.
There have also been numerical and analytical studies of
geometries that could produce repulsion between metals
separated by vacuum, but these systems are unstable to lateral
perturbations and therefore difficult to realize experimen-
tally [23,24]. Deng et al. predicted an attractive-repulsive
transition of the force between an aligned, uniaxial, in-plane
material and a conducting surface separated by vacuum as
a function of distance [25]. This system also relies on the
magnetic response of the plates to produce repulsion.

However, there is another less commonly discussed system
that exhibits Casimir repulsion: nonmagnetic dielectrics with
uniaxial in-plane birefringence separated by a dielectric
medium, as first noted in [5]. For this case, two identical
materials can exhibit Casimir-Lifshitz repulsion under specific

orientations. Although two planar dielectric bodies with
reflective symmetry are always attracted [26], a rotational
displacement between the two anisotropic materials breaks
the reflective symmetry of the system. The force is always
attractive when the axes of symmetry are aligned, but can
become repulsive when the symmetry is broken. Here we
expand on [5] to outline the conditions for which Casimir-
Lifshitz repulsion may occur for two identical, anisotropic
materials.

II. NONRETARDED HAMAKER COEFFICIENTS
FOR ANISOTROPIC SYSTEMS

We consider two identical, semi-infinite slabs of uniaxial
birefringent materials with optical axes in the x-y plane, but
rotated with respect to each other [Fig. 1(b)]. Their permittivity
tensors are

ε1 =
⎛⎝ε‖ 0 0

0 ε⊥ 0
0 0 ε⊥

⎞⎠, (1a)

ε2 =
⎛⎝ε‖ cos2 θ + ε⊥ sin2 θ (ε⊥ − ε‖) sin θ cos θ 0

(ε⊥ − ε‖) sin θ cos θ ε‖ sin2 θ + ε⊥ cos2 θ 0
0 0 ε⊥

⎞⎠,

(1b)

where θ is the relative angle between the optical axes of the
materials. When their axes are aligned, θ = 0 and ε1 = ε2.
The Helmholtz free energy per unit area of this system at finite
temperature was derived by Barash [4]:

�(d,θ ) = kBT

4π2

∞∑
n=0

′
∫ ∞

0
rdr

∫ 2π

0
dϕ ln Dn(d,θ,r,ϕ), (2)

where the summand is evaluated at the imaginary Matsubara
frequencies iξn = in2πkBT/h̄, the prime indicates that the
n = 0 term is to be halved, and variables r and ϕ are radial
and azimuthal components of the wave vector. The full form
of Dn is derived in [4] and reproduced in [14,27], but we
include a more compact formulation in the Appendix. In the
nonretarded limit (corresponding to the van der Waals regime),
the Casimir-Lifshitz free energy is expressed in terms of a
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FIG. 1. Schematic of the systems under investigation. Two
infinite dielectric slabs interact across a third dielectric of width d .
We compare the Casimir-Lifshitz interaction in (a) the case of two
isotropic slabs with dielectric functions ε1 and ε2 to (b) the case with
two identical birefringent materials with dielectric function ε‖ along
the principal axis and ε⊥ in the other directions. In (b) the optical
axis for material one is along the x axis while that of material two is
rotated by θ = π/2.

Hamaker coefficient, which is independent of d:

�(d,θ ) = − AHam

12πd2
, (3)

resulting in a force given by

F (d,θ ) = −∂�(d,θ )

∂d
= −AHam

6πd3
. (4)

The sign of the Hamaker coefficient gives the sign of the force,
with AHam > 0 indicating attraction and AHam < 0 indicating
repulsion.

The dispersion condition can be written as a function of the
Fresnel reflection matrices of the two interfaces, as in [22,28]:

Dn = det(I − r1r2e
2ρmd ), (5a)

ri =
(

rss
i r

sp

i

r
ps

i r
pp

i

)
. (5b)

In the nonretarded approximation, rss
i = r

sp

i = r
ps

i = 0,
and only r

pp

i (corresponding to TM modes) remains, so that

Dn = 1 − r
pp

1 r
pp

2 e−2ρ3d , (6a)

r
pp

i = ε3 − ε⊥
√

1 + (ε‖/ε⊥ − 1) cos2 (θi + ϕ)

ε3 + ε⊥
√

1 + (ε‖/ε⊥ − 1) cos2 (θi + ϕ)
, (6b)

where θ1 = 0, θ2 = θ , and ϕ is an integration variable. In
this approximation, the integral over r can be carried out
analytically, and the nonretarded Casimir-Lifshitz interaction
energy per unit area is proportional to 1/d2.

The three dielectric constants in r
pp

i can be expressed
in terms of two variables, such as ε‖/ε3 and ε⊥/ε3. Using
Eqs. (5) and (6a), the integral over r in Eq. (2) can
be performed analytically, and we can write the Hamaker
coefficient as a sum of contributions from each Matsubara
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FIG. 2. The contribution of a single Matsubara term to the
total Hamaker coefficient is plotted as a function of the dielectric
coefficients. The red regions represent a positive energy (attractive
force) and the blue regions represent a negative energy (repulsive
force). (a) Shows the contributions when the interacting materials are
isotropic and not necessarily identical. (b) Shows the contributions
for two anti-aligned identical birefringent materials. The blue regions
correspond to a negative contribution to the free energy (repulsion)
for both (a) and (b). For anti-aligned birefringent materials, the
greatest negative contribution possible from a single Matsubara term
is approximately −0.45 zJ. The points indicate the contributions
from the first 1000 Matsubara terms for the (a) gold-ethanol-vacuum
system and (b) gold gratings interacting across ethanol at room
temperature (Matsubara terms n = 10,100,1000 are indicated by
+,�,©, respectively).

frequency:

AHam =
∞∑

n=0

′
AHam,n, (7a)

AHam,n = 3kBT

4π

∫ 2π

0
dϕLi3

(
r

pp

1 r
pp

2

)
, (7b)

where Li3 is the third-order polylogarithm function. The
integration over ϕ is carried out numerically for θ = π/2 as a
function of the ratios ε‖/ε3 and ε⊥/ε3 in Fig. 2(b).

The total Hamaker coefficient can be found by summing
the values of the dielectric functions at each of the Matsubara
frequencies. For comparison, we also consider the interaction
between isotropic materials with ε1 = ε‖ and ε2 = ε⊥. The
nonretarded free energy is given by Eq. (7), with r

pp

i,iso =
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εi−ε3
εi+ε3

. This expression yields Dzyaloshinskii’s condition for
repulsion between isotropic materials: ε1 < ε3 < ε2 or ε2 <

ε3 < ε1. These conditions correspond to the blue region in
Fig. 2(a).

By analogy, one might suspect that the repulsion condition
for birefringent materials is ε⊥ < ε3 < ε‖ or, for materials with
negative birefringence, ε‖ < ε3 < ε⊥. However, the repulsive
condition depends on ϕ (the azimuthal direction of the mode’s
k vector), and these inequalities are a necessary (but not
sufficient) condition for repulsion. In the nonretarded case,
the repulsion condition r

pp

1 r
pp

2 < 0, which yields a negative
integrand in Eq. (7), simplifies to(

ε⊥

√
1 +

(
ε‖
ε⊥

− 1

)
cos2 ϕ − ε3

)

×
(

ε⊥

√
1 +

(
ε‖
ε⊥

− 1

)
cos2 (θ + ϕ) − ε3

)
< 0. (8)

Systems that exhibit Casimir-Lifshitz repulsion (and, as a
result, an attractive-repulsive transition with θ ) will have
materials that satisfy Eq. (8) for a range of ϕ at many Matsubara
frequencies. In the anti-aligned case where θ = π/2, this is
achieved for combinations of dielectric functions that fall in the
blue regions of Fig. 2(b). As an example of such a system, we
consider a fictional material with high birefringence that has
ε‖ modeled by the dielectric response of gold and ε⊥ = 1. We
use the dispersion models from [14,29] for ethanol and gold,
respectively. The points in Fig. 2(b) correspond to the AHam,n

that contribute to the repulsive nonretarded Casimir-Lifshitz
force for this system. For comparison, the points in Fig. 2(a)
correspond to the nonretarded Casimir-Lifshitz interaction in
a gold-ethanol-vacuum system.

III. LONG-RANGE REPULSIVE CASIMIR FORCE
BETWEEN ANISOTROPIC MATERIALS

At separations greater than a few nanometers, retardation
effects become significant. The Hamaker coefficient usually
decreases monotonically with distance, although it may be
slightly increased in special cases [30]. The Casimir-Lifshitz
force is a result of quantum fluctuations as well as thermal
fluctuations, and the quantum fluctuations alone can cause
repulsion between anti-aligned, birefringent materials. To
illustrate this, we consider the long-range, zero-temperature
Casimir effect. In this regime, the force between metals
approaches the original expression derived by Casimir [1]:
FCasimir(d) = −h̄c π2

240
1
d4 . Lifshitz derived the force between

dielectrics in the long-range case [2]. Physically, the DC
dielectric constant εi,0 is used to describe the dielectric function
over all frequencies because the high frequency terms are
damped by retardation. With this approximation, we calculate
the long-range Casimir force of anti-aligned gratings when the
material is an ideal conductor (ε → ∞) along its ordinary axes
or extraordinary axis, which correspond to two-dimensional
(2D) and one-dimensional (1D) conductors, respectively.
When the material is a 1D conductor (Fig. 3), there is Casimir
repulsion for anti-aligned materials when ε⊥,0 � 0.27ε3,0. We
note that long-range interactions at finite temperatures are
dominated by the nonretarded n = 0 Matsubara term, which

FIG. 3. The ratio of the zero-temperature, long-range Casimir
force for the two systems of Fig. 1 scaled to the Casimir force between
two perfect conductors, FCasimir = −h̄cπ 2240/d4, with ε‖,0 and ε1,0

taken to infinity (as for a perfect conductor). In this case, the DC
dielectric constants of the other materials determine the sign of the
force. For the isotropic case (a), the condition for repulsion is the
usual ε2,0 < ε3,0. For the case with identical, anti-aligned birefringent
materials (b), the repulsive condition is numerically found to be
ε⊥,0 � 0.27ε3,0.

is strictly attractive for 1D conductors (ε‖ → ∞). However,
birefringent materials with finite dielectric functions at zero
frequency may still exhibit long-range Casimir repulsion if the
materials satisfy the conditions in Fig. 2(b) for the n = 0 term.

IV. EXAMPLE WITH GOLD, ETHANOL, AND VACUUM

To illustrate some of the consequences of an orientation-
dependent sign change in the Casimir force, we further
consider the interaction between 1D gold conductors across
ethanol with retardation effects: ε‖ = εAu, ε⊥ = 1, ε3 = εethanol

at room temperature. The anisotropic materials can be thought
of as idealized arrays of gold nanowires. As noted in [31],
the dielectric models used in calculation can have a nontrivial
effect on the calculated results, so these calculations do not
precisely represent the physical system. Instead, we present
them to demonstrate the sign change in the Casimir force
as a function of separation and relative orientation, and
emphasize that this effect can occur for other combinations of
materials.

At short ranges, this system exhibits attraction for aligned
materials and repulsion for anti-aligned materials. The nonre-
tarded Hamaker coefficient is plotted as a function of relative
orientation in Fig. 4. The extreme values of AHam correspond
to ≈6 kBT at room temperature, which is a typical value for
dielectrics interacting across a medium [32]. We also show the
energy of the aligned and anti-aligned materials as a function
of distance in Fig. 5, noting that the energy has the approximate
form of �(d,θ ) ∼ sin2 θ at a fixed distance. The anti-aligned
plates exhibit Casimir repulsion up to a separation of 70 nm.
At greater distances the Casimir force is attractive. This sign
change is a result of the dispersion of the materials, as in [33].

V. CASIMIR-LIFSHITZ REPULSION BETWEEN REAL
MATERIALS

We have calculated the repulsive force between the hypo-
thetical gold or vacuum gratings in ethanol to demonstrate
a strong version of this effect. However, the gratings would
surely have different dielectric properties than the simple
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FIG. 4. The room temperature, nonretarded Hamaker constant
between infinite half-spaces of 1D conductors (ε⊥ = 1, ε‖ = εAu)
separated by ethanol. The slabs experience an attractive force when
the conduction axes are aligned and a repulsive force when the axes
are anti-aligned.

ε⊥ = 1, ε‖ = εAu system we have described here. In reality,
one might consider the effect between two identical, uniaxial
crystals with high optical anisotropy. The calculation of
Casimir-Lifshitz forces requires the knowledge of ε(iξ ) for
a very large range of frequencies. These dielectric functions
can be constructed from optical data with the Kramers-
Kronig relations but usually carry a large degree of uncer-
tainty [32,34–36]. The repulsive force discussed here requires
an intervening dielectric of intermediate strength at a large
number of Matsubara terms so given the limited availability
of experimentally determined optical properties, it is difficult
to confidently predict a combination of materials that could
achieve repulsion.

However, we can suggest properties of materials that could
achieve a repulsive force. With an eye towards satisfying
Eq. (8), we suggest that the uniaxial crystals should have
high birefringence. If the intervening material is a liquid, then
uniaxial crystals with low indices may make the repulsion
condition easier to satisfy (as many liquids have 1 < ε(iξ ) < 2

gold wires
anti-aligned

gold wires 
aligned

repulsive

attractive

FIG. 5. The distance dependence of the Casimir-Lifshitz force
between two idealized 1D conductors separated by ethanol. When the
conductance directions are perpendicular, the two plates are repelled
at short distances (d � 70 nm) and attracted at long distances.

FIG. 6. The black lines represent the birefringent crystals with
solid and dashed lines corresponding to the ordinary (⊥) and
extraordinary (‖) axes, respectively. The gray band represents values
of ε3(iξ ) that satisfy Eq. (8). The blue lines represent a liquid chosen
to maximize the number of Matsubara terms that satisfy Eq. (8). Inset
shows the values used in the Ninham-Parsegian oscillator model, with
values for ωUV and ωIR in eV.

for the relevant Matsubara frequencies [36]). A system that
satisfies Eq. (8) for the n = 0 Matsubara term, for which static
dielectric constants are often well known, would likely achieve
repulsion at large separations where the n = 0 term dominates.

In Fig. 6, we plot dielectric models of ε(iξ ) for four
birefringent materials along with ε(iξ ) models for liquids
that satisfy Eq. (8) for some Matsubara terms. We construct
Ninham-Parsegian models for ε(iξ ) of BaB2O4 and LiIO3

using the method of [34], the static dielectric constants
from [37], and the optical data from [38,39]. The model for
CaCO3 is from [35], and the models for iodobenzene and
diiodomethane are from [36]. With these dielectric models,
the systems with BaB2O4, LiIO3, and CaCO3 and chosen
liquids would not experience Casimir-Lifshitz repulsion for
any relative orientation of the crystals. However, given our
limited knowledge of the ε(iξ ) functions, it is possible that
the proposed systems or others like them could exhibit the
repulsive effect described here for slightly modified optical
properties.

A system that often satisfies Eq. (8) is the intervening “melt”
between two birefringent solids considered by Parsegian [5],
which has ε3 = (2ε⊥ + ε‖)/3. This is a common model for
liquid crystals in the isotropic state [41]. The lower right
figure in Fig. 6 shows the interaction between anti-aligned
5CB nematic liquid crystal when separated by isotropic 5CB.
This uses the dispersion model for 5CB developed in [40].
However, measuring a repulsive force between two liquid
layers (separated by a third liquid at a different temperature)
presents obvious experimental difficulties.

VI. CONCLUSION

We have detailed the conditions for a repulsive Casimir-
Lifshitz force to exist between identical birefringent materials
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in the retarded and nonretarded regimes. The constraint on
the dielectric functions [Eq. (8)] is more restrictive than the
ε1 < ε3 < ε2 condition for isotropic dielectrics. However, re-
pulsion between identical birefringent materials is achievable.
Furthermore, because the force can be changed from attractive
to repulsive by rotating one of the materials, it could be used
as a switchable force in MEMS or NEMS devices. Because
repulsion between identical birefringent dielectrics exists for
certain materials over a large range of separations, this effect
could be important in many physical systems.
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APPENDIX: COMPACT NOTATION FOR DISPERSION
RELATION

The explicit form of the dispersion relation (Dn = 0) for
two uniaxial, anisotropic, parallel plates with optical axes in-
plane can be found in [4,14,27]. The full form is cumbersome
and opaque [30], but can be written much more compactly in
terms of the Fresnel reflection matrix for each plate:

Dn = det(1 − r1r2e
−2ρ3d ). (A1)

For each plate, the Fresnel reflection coefficients can
be written in terms of a common denominator:

r =
(

rss,N rsp,N

rps,N rpp,N

)/
rD. (A2)

rsp,N = rps,N = k
√

ε3ε⊥ρiρ3(ρi − ρ̃i) sin(2θi), (A3a)

rss,N = sin2(θi)α̃−γ+ + cos2(θi)α−ν+, (A3b)

rpp,N =− sin2(θi)α̃+γ− + cos2(θi)α+ν−, (A3c)

rD = sin2(θi)α̃+γ+ + cos2(θi)α+ν+, (A3d)

where we have introduced the following notation, which is
modeled after [42,43]:

α± = ρ3 ± ρi, (A4a)

α̃± = ρ3 ± ρ̃i , (A4b)

ν± = ε3ρ
3
i ± ε⊥ρiρ̃iρ3, (A4c)

γ± = ε⊥k2(ε⊥ρ3 ± ε3ρi). (A4d)

This uses the original notation of Barash:

ρi =
√

r2 + ε⊥k2, (A5a)

ρ3 =
√

r2 + ε3k2, (A5b)

ρ̃i =
√

r2 + (ε‖/ε⊥ − 1)r2 cos2 θi + ε‖k2, (A5c)

with k = ξ/c (where ξ is an imaginary frequency) and θi

representing the azimuthal angle between the wave vector and
extraordinary axis of the material. If we choose coordinates
such that the extraordinary axis of the first birefringent plate
is along the x axis, then θ1 = ϕ and θ2 = ϕ + θ , where ϕ is
an integration variable and θ is the relative angle between
the two crystals’ extraordinary axes. With these substitutions,
this formulation reproduces the analytic formula of [4]. We
hope that this notation can help to elucidate these complicated
interactions.
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