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The spatial dependence of absorption in optical structures is important for determining the
performance of optoelectronic devices, such as solar cells and photodetectors. When random
scattering structures are introduced, the absorption can be difficult to calculate without direct
simulation or broad simplifying assumptions. Here we present a theoretical framework for
calculating the absorption in individual layers of arbitrary stratified media composed of any
combination of coherent thin-films and/or incoherent thick slabs in the presence of randomizing
scattering structures. This model allows for accurate predictions of generated carriers in photovol-
taic systems. We discuss how these equations may be implemented to describe several common
special cases as well as a few complex, non-traditional structures to show the wide range of appli-
cability. Finally, we perform experiments on two multilayer structures with interlaced scattering
layers to demonstrate utility and accuracy of the technique. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4965874]

I. INTRODUCTION

Understanding where absorption takes place within an
optoelectronic device (e.g., a solar cell or photodetector) is
essential to evaluating its performance. Absorption in the
active layers leads to carrier generation, while absorption
outside of those regions represents energy loss. While the
total absorption may be of interest, knowing the location of
absorption allows researchers to properly evaluate trade-offs
and optimize device efficiency. For simple, non-scattering
stratified structures, this calculation is either performed
directly by finding the electromagnetic field throughout the
individual layers1,2 or by finding the total absorption and
neglecting less absorptive layers. When scattering structures
are introduced, these calculations can be more difficult. If
these structures contain coherent scatterers such as gratings
or periodic arrays of particles, the absorption in each layer
can be found by calculating the fields using rigorous
coupled-mode theory,3,4 finite element simulations,5–8 or, in
some cases, analytic expressions.9,10 However, when scatter-
ing occurs from non-periodic (random) configurations, these
techniques are no longer applicable. In these cases, calculat-
ing absorption in individual layers requires either aggregates
of randomized sub-simulations11 (e.g., Monte Carlo techni-
ques), simplifying assumptions (e.g., no absorption in all
other layers), or using analytic expressions for the limit of
absorption assuming ideal randomization of the light and/or
optimal mode coupling.7,8,10,12–17 The modeled transmission
and reflection from white paint back reflectors on thin-film
silicon solar cells has also been considered in Ref. 18; how-
ever, such calculations do not provide the absorption in indi-
vidual layers, which is particularly useful for complex

structures in the presence scattering. Thus, there is a need for
complete analytic results that can quickly and accurately
describe absorption in individual layers of more elaborate
structures that incorporate scattering, coherent layers, and
incoherent layers.

Here we present analytic expressions for absorption in
individual layers of arbitrary stratified planar media (having
any combination of thin coherent films and thick incoherent
slabs) containing randomizing scattering structures. We focus
our discussion on structures with planar scattering layers that
completely randomize the light in that layer. The framework
is most directly applicable to layers of dielectric scatterers, as
we will use the effective refractive index ensemble model,19

and will be limited to weakly absorbing scattering layers (no
such constraints are placed on other layers). However, the
equations are completely agnostic toward the nature of the
scattering (i.e., how the scattering is achieved) and only
require that it can be described by parameters that can be
determined experimentally. Note that this method yields fully
analytic results, differing from approaches that use analytic
expression incorporating simulated scattering.6–8 We then
give examples of how to implement these models in several
special cases. We show how this model can be used to
describe a variety of interesting structures and compare two
examples to experimental measurements.

The methods presented here have several benefits over
previously developed techniques. Finite element methods are
good for periodic structures but are computationally expen-
sive for randomly distributed scatterers and do not provide
the same level of physical insight as analytical solutions.
Further, unlike other spectral flux methods, we introduce an
effective index model, which only requires three parameters
that can be determined experimentally. Our techniquea)Electronic mail: jnmunday@umd.edu
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enables us to derive analytic solutions for the absorption in
individual layers with arbitrary sets of coherent and incoher-
ent layers, enabling fast computation for complex device
architectures.

II. CALCULATING TOTAL ABSORPTION

Total absorption, reflection, and transmission in the
absence of scattering can be calculated by Fresnel coeffi-
cients using the matrix transfer method with coherent reflec-
tion/transmission (at thin-film interfaces) and incoherent
reflection/transmission (at interfaces with thick layers such
as a glass substrate or a bulk material) following Mitsas and
Siapkas.20 This well-known method calculates the coeffi-
cients in two steps. First, field transfer matrices are used to
calculate the intensity of reflection/transmission between
incoherent layers (or to outside the stack). Second, intensity
transfer matrices are used to calculate the total reflection/
transmission. Partial coherence may also be introduced by
simple modifications to field transfer matrices.20,21 When a
scattering layer is present, the total absorption, reflection,
and transmission can similarly be determined depending on
the nature of the scattering.4,7,8,11,18,19,22–24 To account for
planar structures with an arbitrary combination of layers,
some knowledge of the scattering material is required in
order to accurately model the fraction of light that enters or
exits the scattering layer. When the light entering the scatter-
ing structure becomes completely randomized before return-
ing to one of the two interfaces, only a few parameters are
needed to describe the scattering layer (note that randomiza-
tion does not mean that this layer creates a Lambertian scat-
tering distribution, but that light inside this layer has
constant power per solid angle; see below and Ref. 19 for
further discussion). We previously showed that in this ran-
domizing regime, the only parameters necessary to accu-
rately describe light propagation in this layer are the
experimentally measurable values of internal loss, transmis-
sion, and the ensemble of effective indices present at the
interfaces of the scattering layer.19 Here we use the effective
index ensemble model because it physically describes many
cases of interest, it gives insight into the nature of random
scattering, and because its generality allows for modeling of
a wide variety of scattering structures. The effective index
ensemble model takes the heterogeneous nature of scattering
materials into account by assigning a distribution of effective
indices to describe the interface with a scattering layer. This
ensemble may be approximated by a single index, producing a
Lambertian or focused Lambertian scattering distribution, but
in general, results in a scattered intensity per solid angle of

I hð Þ ¼ I0 cos hð Þ
!

T h; neff ; nð ÞP neffð Þ
n

neff

" #2
$

neff
; (1)

where n is the index of refraction for the material into which
the scattering occurs, h is the angle from surface normal
inside the material into which the scattering occurs, neff is
an independent variable that is bounded by the minimum and
maximum indices of the materials in the scattering layer,

PðneffÞ is the probability of scattering from a given effective
index (note that this function is what defines the ensemble of
effective indices, and is in general, a continuous function),
Tðh; neff ; nÞ is the transmission coefficient for light exiting
the scattering layer, and h ineff

indicates the average over the

ensemble of indices. Eq. (1) follows directly from our defini-
tion of random (constant power at each solid angle). Note
that when Imfneffg is non-negligible, i.e., when the condition
Imfneffg=Refneffg$ 1 fails, angles become complex and
lose the simple meaning they had in our definition of random
and in Eq. (1). In this case, randomization must be under-
stood in the more general sense of equally filling all modes.
Our discussion is limited to weakly absorbing scattering
layers (other layers are not restricted in this way), which cov-
ers most cases of interest. However, Table I and Appendix A
show special case, including the addition of absorbing
scatterers.

With scattering specified as above, we can calculate the
total reflection, transmission, and absorption for the general
scattering structure shown in Fig. 1. A scattering layer (s0) is
sandwiched between an arbitrary set of incoherent layers
(denoted by primed letters ranging from a0 to b0) and coher-
ent layers (unprimed letters from a to b). This structure con-
tains incoherent layers interlaced with arbitrary sets of
coherent layers. In general, t and r refer to field transmission
and reflection coefficients and T and R refer to intensity coef-
ficients. Subscripts will denote the origin and endpoint layers
for light in the calculation of a given coefficient with no
propagation beyond the origin and endpoint. For example,
Ta0 b0 is be the transmitted intensity for light originating just
inside layer a0 at the interface nearest layer b0 and ending
just inside layer b0 at the interface nearest layer a0. Note that
in the presence of absorbing layers some typical identities
for these coefficients no longer apply (e.g., Ra0 b0 6¼Rb0 a0 ); so,
subscript ordering should be carefully noted. Under this
scheme, the general scattering distribution described above
results in total structure reflection, transmission, and absorp-
tion given by

Ra0 b0 ¼ hRa0 s0 iþ
hTa0 s0 ihTdiff;s0a0 ihRscati
1& hRdiff;s0a0 ihRscati

; (2a)

Ta0b0 ¼
hTa0s0 ihTscati

1& hRdiff;s0 a0 ihRscati
; (2b)

and

Aa0 b0 ¼ 1& Ra0 b0 & Ta0 b0 ; (2c)

respectively, where

hRscati ¼ 1& sintð Þqint þ
sintqintð Þ2hRdiff;s0 b0 i

1& 1& sintð ÞqinthRdiff;s0 b0 i
; (2d)

and

hTscati ¼
sintqinthTdiff;s0 b0 i

1& 1& sintð ÞqinthRdiff;s0 b0 i
; (2e)
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and h i denotes averaging over the effective index ensemble
and over both polarizations (note that while we assume the
polarization is lost inside the scattering layer, Fresnel coeffi-
cients are still polarization dependent). qint and sint are two
parameters that characterize the scattering layer and can be
determined experimentally. qint is the sum of the reflected
light and transmitted light intensities (qint ¼ Rþ T), and sint

is the ratio of the transmitted intensity to qint, i.e., sint

¼ T
qint
¼ T

RþT. Thus qintsint is the fraction of light transmitted
from one side of the scatterer to the other and qintð1& sintÞ is
the fraction reflected back. Ra0s0 and Ta0s0 are the fractions of
direct illumination reflection and transmission, respectively,
corresponding to light passing through all layers a0 to s0.
Rdiff;s0a0 and Tdiff;s0a0 (Rdiff;s0b0 and Tdiff;s0b0 ) are the total inte-
grated diffuse reflection and transmission for light traveling
from the scatterer to outside the front (back) surface. These
values can be calculated from the angularly dependent reflec-
tion and transmission. For instance, the diffuse reflection for
light leaving the scattering layer and travelling out through
the front of the structure is given by

Rdiff;s0a0 ¼ 2

ðp
2

0

Rs0 a0ðhs0Þ cos ðhs0Þ sin ðhs0Þdhs0 : (3a)

hs0 is the angle from the normal in the scattering layer (not
the angle of the light escaping the surface). Lastly, direct
illumination is not a requirement of the model and diffuse
illumination can be implemented by changing Ra0s0 and Ta0s0

in Eqs. (2a) and (2b) to their diffuse counterparts, Rdiff; a0s0 ,
and Tdiff; a0s0 . As an example (in direct analogy to Eq. (3a)),
the diffuse reflection resulting from diffuse illumination is

Rdiff; a0s0 ¼ 2

ðp
2

0

Ra0 s0ðha0Þ cos ðha0Þ sin ðha0Þdha0 ; (3b)

where ha0 is the incident angle in the front semi-infinite space
(Fig. 1).

III. CALCULATING ABSORPTION IN INDIVIDUAL
LAYERS

In this section, we demonstrate how to calculate the
absorption in individual layers of stratified media containing
scattering layers by working through levels of abstraction up
to the full scattering structure shown in Fig. 1. We first con-
sider a stack of coherent layers and determine the absorption
in individual layers. Second, we consider how this absorption
is modified when this stack of coherent layers is part of a
larger structure containing both coherent and incoherent
layers and determine the absorption in a single incoherent
layer for this case. Finally, we use our result to calculate the
absorption in each layer (coherent or incoherent) of the full
structure (containing coherent, incoherent, and scattering
layers) shown in Fig. 1.

Before proceeding to the calculation, some additional
discussion on notation is needed. In general, a single sub-
script denotes the layer corresponding to that parameter
(e.g., nj is the refractive index of the jth layer). Absorption
coefficients that use one subscript denote single pass absorp-
tion within that incoherent layer (starting just inside the layer
on one side to just inside the same layer at the opposite

surface). Three subscripts will be used for absorption in mul-
tilayers—indicating the layer in which the light originates,
the layer in which absorption is calculated, and the endpoint
layer, respectively. Furthermore, the propagation direction
will be specified by a relative parallel (to the surface) k-vec-
tor, q ¼ kk

k0
where kk ¼ nk0 sin h (note that this value, q, is

constant in all layers in the absence of scattering). If there is
no absorption, h has its usual meaning, the angle from nor-
mal in a material of refractive index n. However, within dis-
persive structures h is in general complex. Also note that, as
done above, we eschew the typical matrix notation and
instead opt for explicit equations because the former does
not reduce notation or increase clarity due to the large num-
ber of unique named variables (see Appendix B for a com-
plete list of variables and constants).

Figure 2 shows a schema of the electric field compo-
nents propagating forward (þ) and backward (&) in a stack
of coherent layers, enumerated from a to b. The inset of this
figure shows the field components in the jth layer. The
absorption in a given coherent layer (defined as the intensity
loss in that layer as light travels through the entire coherent
stack), for a given propagation direction, is calculated fol-
lowing Pettersson et al.1 and Centurioni.2 To find the absorp-
tion in a given layer, we calculate the energy density in that
layer, which is proportional to absorption. Absorption in the
jth layer of a single stack of coherent layers due to light orig-
inating just outside of the stack (i.e., in the i0th layer) and
passing through the entire stack (i.e., to the (i0þ 1)th layer) is
given by

~Ai0j i0þ1ð Þ qð Þ¼
ðdj

0

1

2

ce0ajRefnjg jE?;j x;qð Þj2þ jEk;j x;qð Þj2
h i

dx

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1& q

ni0

" #2
s8<

:

9
=

;Re ni0f g

;

(4a)

where the tilde is used to distinguish the absorption in j for a
single coherent stack from general case, including incoherent
layers, defined below. The fields for TM polarization are
given by

E?;j x; qð Þ ¼ Eþj x; qð Þ & E&j x; qð Þ
h i q

nj
; (4b)

¼ tþi0j i0þ1ð Þ eiqx & rj i0þ1ð Þe
iq 2dj&xð Þ

h i q

nj
; (4c)

and

Ek;j x; qð Þ ¼ Eþj x; qð Þ þ E&j x; qð Þ
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1& q

nj

" #2
s

; (4d)

¼ tþi0j i0þ1ð Þ eiqx þ rj i0þ1ð Þe
iq 2dj&xð Þ

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1& q

nj

" #2
s

;

(4e)

and for polarization TE

E?;jðx; qÞ ¼ 0; (4f)
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Ek;jðx; qÞ ¼ tþi0j ði0þ1Þ½e
iqx þ rj ði0þ1Þe

iqð2dj&xÞ(; (4g)

where

tþi0j i0þ1ð Þ ¼
ti0j

1& rj i0rj ði0þ1Þei2qdj
; (4h)

(with assumed polarization and q dependence of Fresnel
equations). As shown in Fig. 2, E is the normalized electric
field with k or ? denoting the components of the field either
perpendicular or parallel to the surface, and þ and – super-
scripts refer to the forward and backward travelling waves,
respectively; aj is the absorption coefficient of the jth layer;
dj is the thickness of the jth layer; rj ði0þ1Þ is the reflection
coefficient from the rear of the jth layer through all the layers
up to the ði0 þ 1Þth layer; rj i0 is the reflection coefficient from
the jth layer to the i0th layer; and ti0j is the transmission coeffi-
cient from the i0th layer to the jth layer.

For a non-scattering structure containing both coherent
and incoherent layers, the total absorption in a coherent layer
j can be calculated by considering how many times the light
passes through the coherent layer stack containing the jth

coherent layer and with what intensity. Here, as depicted in
Figs. 2 and 3, we denote the last incoherent layer before the
coherent layer stack (containing j) as the i0th layer and the
first incoherent layer after the stack as the (i0þ 1)th layer.
When no scattering is present, the absorption in layer j due
to light originating in an incoherent layer, a0, and traveling to
an incoherent layer, b0, is given by

Aa0j b0 qð Þ ¼
Ai0j b0 qð ÞTa0 i0 1& Ai0ð Þ
1& Ri0 a0Ri0 b0 1& Ai0ð Þ2

; (5a)

where

Ai0jb0 qð Þ¼ ~Ai0 j i0þ1ð Þ qð Þ

þ
~A i0þ1ð Þ ji0 qð ÞTi0 i0þ1ð ÞR i0þ1ð Þb0 1&A i0þ1ð Þ

' (2

1&R i0þ1ð Þ i0R i0þ1ð Þb0 1&A i0þ1ð Þ
' (2

; (5b)

and Ai0 and Aði0þ1Þ are the absorption for a single pass
through the i0th or ði0 þ 1Þth layer, respectively (defined in the
usual way as 1& jexp ði d k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 & q2

p
Þj2). Again, polariza-

tion and q dependence are assumed in all reflection and
transmission coefficients. Note that when the a0th layer is
also the i0th layer, Ta0 i0 ¼ 1, Ri0 a0 ¼ 0, and Ai0 ¼ 0. Similarly,
when the ði0 þ 1Þth layer is also the b0th layer, Rði0þ1Þ b0 ¼ 0
and Aði0þ1Þ ¼ 0. Absorption in an incoherent layer is given
by similar equations. For example, the absorption in an arbi-
trary incoherent layer i0 due to light originating in the a0th

layer and ending in the b0th layer is given by

Aa0i0b0 qð Þ ¼ 1þ 1& Ai0ð ÞRi0 b0
) * Ta0 i0Ai0

1& Ri0 a0Ri0 b0 1& Ai0ð Þ2
:

(5c)

FIG. 2. Schema of the electric field components in each layer with number-
ing notation used to describe stacks of coherent layers. Coherent layers are
enumerated a through b, with light originating and ending in semi-infinite
spaces labeled i0 and i0þ 1. In general, j will be used to denote the coherent
layer of interest. The arrows between the layers represent the direction of
forward and backward traveling waves. Zoom-in on layer j shows the nam-
ing conventions for the fields and k-vectors. The total field consists of for-
ward and backward travelling waves denoted with plus and minus
superscripts, respectively. The total field can be decomposed into parallel
and perpendicular components (marked by k and ? subscripts, respectively).
x is the distance from the light incidence side (i.e., x ¼ 0 at the boundary of
layers j-1 and j in this figure).

FIG. 1. Structure considered in this work, a scattering layer surrounded by
arbitrary combinations of coherent and incoherent layers. Incoherent layers
are enumerated a0 to b0. The scattering layer is denoted as the s0th layer.
Light that enters the scattering layer is fully randomized before returning to
either interface of this layer.
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Finally, we are able to calculate our main result, the
absorption in any layer of a planar structure in the presence
of a scattering layer. The absorption in the zth layer (here z is
used as a dummy variable representing any layer, coherent
or otherwise) due to light impinging on the front (a0th layer)
of our scattering structure with scattering occurring in the
s0th layer can be calculated. When layer z is before the scat-
tering layer, the absorption in layer z is

Atot
a0 z b0 ¼ hAs0 z a0 qð Þiþ

hTa0 s0 ihAdiff; s0z a0 ihRscati
1& hRdiff; s0a0 ihRscati

; (6a)

where

hRscati ¼ 1& sintð Þqint þ
sintqintð Þ2hRdiff;s0b0 i

1& 1& sintð ÞqinthRdiff;s0 b0 i
; (6b)

and when layer z is after the scattering layer, the absorption
in this layer is

Atot
a0z b0 ¼

hAdiff;s0 z b0 ihTscati
1& hRdiff;s0b0 ihRscati

; (6c)

where

hRscati ¼ 1& sintð Þqint þ
sintqintð Þ2hRdiff;s0a0 i

1& 1& sintð ÞqinthRdiff;s0a0 i
; (6d)

and

hTscati ¼
sintqinthTa0s0 i

1& 1& sintð ÞqinthRdiff;s0a0 i
; (6e)

where Adiff; s0z a0 is defined as

Adiff; s0z a0 ¼ 2

ðp
2

0

As0z a0ðns0 sinðhs0ÞÞ cosðhs0Þ sinðhs0Þdhs0 (6f)

with a similar expression for Adiff; s0z b0 .
In the calculations above, we have made a few important

assumptions. We summarize these assumptions here for clar-
ity. First, we assume, that light passing through the scattering
layer becomes completely randomized, so that the scattering
does not depend on incident angle (beyond Fresnel coeffi-
cients for transmission/reflection into and out of the scatter-
ing layer). This condition is required to create analytic
algebraic expressions and is met for many scattering struc-
tures. If the light is not fully randomized, other methods are
required, e.g., a Monte Carlo approach.6,25 Second, we
assumed that the scatterer is weakly absorbing. This condi-
tion is required to define random scattering in the usual way
as producing equal power per solid angle. When this condi-
tion is not met, random can only be properly defined as fill-
ing all optical modes. In Appendix A we also consider the
use of strongly absorbing scatterers where the scatterers are
well separated from the next material interface. Third, we
assumed that the interfaces are planar and parallel to a good
approximation. Large deviations from this approximation
result in additional scattering. However, small deviations
from planar and parallel are permitted (in fact, this deviation

is one of the sources of incoherence in thick layers). In
Appendix A, we also consider rough surfaces (which act as a
type of scatterer) but under some simplifying assumptions
that allow all calculations to be performed as if the structure
contained only planar surface.

IV. SPECIAL CASES

When scattering structures are discussed there are sev-
eral special cases that are typically examined which involve
ideal layers and interfaces. Table I shows how various ideal
front and back scatterers can be modeled. The first column
lists the ideal condition under consideration, the second gives
details of this idealization, and the third column gives a
schematic view of that situation. The penultimate column
describes how to set the parameters of the model to create
that aspect, and the final column notes limitations of the
described modeling. In this section we consider, ideal front
and back scattering layers with additional special cases of
potential interest described in Appendix A.

An ideal back reflector implies that the back reflector is
perfectly reflective and/or the back reflector is perfectly scat-
tering (Lambertian). Perfect reflectivity is achieved when
there is no transmission (qintsint¼ 0) and no loss within the
scatterer (qint ¼ 1). Perfect scattering is typically defined as
producing a Lambertian intensity distribution

I hð Þ ¼ I0 cos hð Þ; for h ) p
2
: (7)

In the presence of resonant structures (coherent films) and
absorption, this Lambertian scattering becomes poorly
defined; however, the effect can be approximated by taking
the scattering layer to have the same refractive index as the
layer into which it is scattering (having index n)

PðneffÞ ¼
1 for neff ¼ Refng
0 else:

(
(8)

FIG. 3. Numbering scheme for a generic stack of coherent and in coherent
layers. This structure has b0-1 incoherent layers between two semi-infinite
layers all enumerated as layers a0 to b0. Between the incoherent layers are a
total of b coherent layers (numbered 1 to b). The stack of coherent layers
containing the jth coherent layer is immediately proceeded by the i0th inco-
herent layer. In direct analogy to Fig. 2, the arrows represent exchange of
intensity between the layers. Note that this figure is in no way meant to
denote any specific structure or layer ordering.
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The real part is taken here to maintain our assumption of
negligible absorption in the scattering layer. Note that when
Imfng becomes large, the reflection at an interface between
two materials with different indices, Refng and n, respec-
tively, becomes non-zero and is no longer angle independent.
In that case, Eq. (8) results in a poor approximation. For
example, GaAs has an index of n ¼ 2.72þ 4.26i at a
wavelength of 250 nm (near an absorption resonance),26

which would produce a 38% TE reflection at a Refng/n
interface for normal incidence and 41% for 90* incidence.
However, at a wavelength of 550 nm, GaAs has an index of
n ¼ 4.06þ 0.27i,26 which would produce a 0.11% reflection
at a Refng/n interface for normal incidence and 0.12% for
90* incidence.

This same process can be used to model ideal intermedi-
ate or top scatterers. To produce Lambertian scattering from
any given interface into a medium with index, n, the scatterer
must have an effective index given by Refng. Note that
because we describe the internal structure of the scattering
layer with only phenomenological constants sint and qint,
there is no requirement that the effective index of the scatter-
ing at the front and the back sides of the scattering layer be
the same. Physically, this may correspond to an index

grading from one side to the other or scatterers placed at an
interface between dissimilar materials (this case is explored
further in Appendix A). As an example, to produce
Lambertian scattering at both sides of the scattering layer,
we have the following.

For Rdiff;s0a0 , Ra0s0 , and Adiff;s0z a0

PðneffÞ ¼
1 for neff ¼ Refnlg
0 else;

(

(9a)

and for Rdiff; s0b0 , Adiff;s0z b0

PðneffÞ ¼
1 for neff ¼ Refnfg
0 else;

(

(9b)

where nl is the index of the last layer before the scattering
layer, nf is the index of the first layer after the scattering
layer and z is the layer (coherent or incoherent) where the
absorption is to be calculated.

Lastly, we consider an ideal antireflection coating on the
top scatterer. This situation can be modeled by setting the top

TABLE I. Absorption modelling of special cases.

Conditions Details Schema Parameter settings Limitations/comments

Ideal back scatterer Perfect (100%) reflection sint ¼ 0, May still have specular reflection

qint ¼ 1

Perfect scatterer
PðneffÞ ¼

1 for neff ¼ Refng
0 else

+
May not be Lambertian in other layers.

Large Imfng will cause
deviation from Lambertian

Ideal intermediate
or top scatterer

Perfect scattering into
first layer above scatterer

PðneffÞ ¼
1 for neff ¼ Refnlg
0 else

+
May not be Lambertian in other layers.

Large Imfnlg will cause
deviation from Lambertian

Perfect scattering into first

layer after scatterer
PðneffÞ ¼

1 for neff ¼ Refnf g
0 else

+
See above.

Perfect scattering both directions When calculating Ra0s0 Rdiff;s0a0 ; and Adiff;s0za0 :

PðneffÞ ¼
1 for neff ¼ Refnlg
0 else

+
See above.

When calculating Rdiff;s0b0 , Adiff;s0zb0 :

PðneffÞ ¼
1 for neff ¼ Refnf g
0 else

+

Perfect antireflection
PðneffÞ ¼

1 for neff ¼ Refnlg
0 else

+
Light leaving front after reflections

from deeper layers will have
Lambertian scattering.sint ¼ 1,

qint ¼ 1
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interface of the scatterer to be a perfect scatterer, but without
allowing any reflection or absorption as light passes through the
scattering layer (setting sint ¼ 1 and qint ¼ 1). Note that the top
perfect scattering requirement prevents reflection from this sur-
face at all incident angles and all wavelengths (as long as
Imfnlg is small, per the above discussion).

Other special cases are outlined in Appendix A, includ-
ing absorbing scatterers and textured surfaces.

V. NUMERICAL DEMONSTRATIONS

Figure 4 shows four examples of multilayer structures
with scattering layers interspersed to illustrate some of
the potentially useful designs that can be calculated using the
above-outlined method. For a thin-film photovoltaic device,
it is desirable to place a scattering object either on the top
surface, the back surface, or in the middle of the device to
increase the optical path length.27–29 However, it is not
always obvious where the most appropriate placement
should be a priori. Figures 4(a)–4(c) shows three examples
of a thin a-Si layer with a scattering layer placed at different

positions within the structure. The layer stack consists of two
coherent layers, a 70 nm SiN layer (often used as an anti-
reflection coating or a spacer layer between the scatterer and
the active material) and a 30 nm absorptive a-Si layer, and a
scattering layer. The scattering layer is characterized by
sint ¼ 0:95 and qint ¼ 0:95 (similar to experimental values
below), and a scattering probability of P(neff¼ 1.5)¼ 1 is
used to represent a simplified scattering case from a material
with an index similar to glass (note that a single effective
index is considered here for clarity but an ensemble of indi-
ces should generally be used for more precise, real world
applications, see for example, Ref. 19). In addition to the
wavelength-dependent absorption, the predicted short-
circuit current for an ideal solar cell can be calculated.
Taking the a-Si as the photovoltaic layer, and assuming that
each absorbed photon generates an electron-hole pair that is
subsequently collected, the short-circuit current density is

Jsc ¼ e

ð1

0

SðkÞ + Atot
a0 z b0ðkÞ +

k
hc

" #
dk; (10)

FIG. 4. Examples of absorption calculated in individual layers using the method described above. (a)–(c) Plots show the separately determined absorption in
an a-Si layer and a scattering layer when the scattering layer is (a) on the top, (b) in the middle, or (c) on the bottom of the multilayer stack. In all cases, the
structure contains a SiN thin-film above the a-Si layer, and the scatterer has an effective refractive index of 1.5 and an internal absorptivity and transmissivity
of 5% and 95%, respectively. Each plot is also labeled with a predicted short-circuit current density corresponding to an ideal device under AM 1.5G illumina-
tion. This value could not have been accurately calculated without first determining the absorption in each layer. (d) Shows the absorption in each layer of a
more complicated multilayer structure. The layers are color coded by material and placement within the stack (see inset). The white layers are 100 nm of SiO2

on the top and 80 nm of SiN in the lower half. The scattering layer has the same parameters as used in (a)–(c). Note that in all cases the absorption of the scat-
terer is calculated as the difference between the total absorption and that of all other structures. Illumination is from the top.
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where k is the incident wavelength, SðkÞ is the spectral power
density (taken to be AM1.5G illumination) and e, h, and c are
electron charge, Planck’s constant and the speed of light,
respectively. Note that this calculation can only accurately be
performed when the per-layer absorption ( Atot

a0 z b0ðkÞ ) is
known. Using the above equations, we are able to accurately
determine that, for these structures (Figs. 4(a)–4(c)), the scat-
tering layer should be placed on the top for best performance,
i.e., maximized absorption in the a-Si layer.

Figure 4(d) shows the absorption within each layer of a
structure with a large number of absorbing layers. The colors
in the shaded regions correspond to the layers shown in the
inset of this figure. This structure uses the same scattering
layer parameters used in Figs. 4(a)–4(c) and has two non-
absorbing layers (depicted as white in the inset): a 100 nm
SiO2 layer on the top and an 80 nm SiN layer in the lower
half. The bottom bulk Ge layer (yellow) is an incoherent
layer. This structure is meant to roughly correspond to a
more complex device where absorption can occur in specific,
isolated layers (e.g., a multi-junction solar cell) where a scat-
tering layer has been placed between the two absorbing
layers (note: this is not meant to be a suggestion of an actual
device; the materials were chosen to give an example of the
method only). Again, this method allows for accurate deter-
mination of absorption in each layer individually.

In addition to the computational examples provided above,
two experiments are conducted and our method is used to show
how the absorption in each of the individual layers may be
determined in a real world scenario. In both examples, the scat-
tering characteristics are determined experimentally using a
custom gonioreflectometer, as described in Ref. 19. The values
of sint and qint are fit for each of the scattering layers using
transmission and absorption measurements on independent
structures. The indices and thicknesses of the layers are deter-
mined using ellipsometry and confirmed by step height meas-
urements from an atomic force microscope. Absorption and
transmissions measurements are performed using the integrat-
ing sphere setup described in our previous work.19

Figure 5(a) shows the measured total absorption
(circles) for a structure consisting of two layers of ITO
(indium tin oxide) on glass separated by a scattering layer (a
polymer dispersed liquid crystal (PDLC30)) and the calcu-
lated absorption in each of the individual layers. Similarly,
Fig. 5(b) shows the measured and calculated absorption for an
ITO coated glass slide with a scattering layer on the back (bar-
ium sulfate nanoparticle paint).19 In both cases, the total calcu-
lated absorption closely matches the measured total absorption.
These simple examples are presented merely to demonstrate
the experimental utility of the theoretical framework outlined
above and its applicability to a variety of samples.

VI. CONCLUSIONS

Here we presented an analytical description of absorption in
individual layers of stratified medium containing a scattering
layer that randomizes the light. We showed how this calculation
can be carried out in the presence of an arbitrary set of layers
containing both coherent and incoherent layers. We considered
some important special cases. Finally, we offered several theoret-
ical and experimental examples to demonstrate some of the
potential applications of this approach. The generality of these
equations should be of particular interest with perhaps the most
severe restriction being internal randomization of light within the
scattering layer. However, with this criterion met, the theory
requires only that the scattering layers be described by two
experimentally measurable parameters.19 Thus, the equations
presented here are completely agnostic toward the actual nature
of the scatterer and enable the calculation of absorption within
each layer individually, which should aid in the development
and screening of many potential optoelectronic devices designs,
e.g., thin-film photovoltaics, photodetectors, and so on.
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FIG. 5. Experimentally determined total absorption (open circles) agrees with the total absorption calculated from our model by adding up the absorption in
the individual layers. The model enables the determination of how much light was absorbed in each layer, which was not possible through the absorption mea-
surement alone. (a) A scattering structure containing two (different) absorbing ITO layers and a scattering layer composed of a polymer dispersed liquid crystal
(PDLC) suspension. Note that the absorptivity of the glass used in this device is found to be immeasurably small and is not shown here. (b) Absorption in a
scattering structure composed of barium sulfate nanoparticles applied to an ITO coated glass slide.
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APPENDIX

The following tables are provided as a reference guide to several additional cases of particular interest and as a summary
of the variables used here.

APPENDIX A: TABLE OF ADDITIONAL SPECIAL CASES

APPENDIX B: TABLE OF VARIABLES FOR ABSORPTION MODELLING

Conditions Details Schema Parameter settings Limitations/comments

Embedded scatterers

including strongly
absorbing particles

In non-absorbing

layer

Treat embedding layer as the scattering layer

PðneffÞ ¼
1 for neff ¼ nmin

0 else

+

where nmin is smaller Refng of either the
particles or embedding material

The physical situation

described is only accurately
modeled if the strongly

absorbing particles are far
from interfaces

Scatterers at interface

including strongly
absorbing particles

In non-absorbing

layers

Treat two surrounding layers as a single

scattering layerUpper half:

PðneffÞ ¼
1 for neff ¼ nmin

0 else

+

where nmin is smaller Refng of the
particles or upper material.

Lower half: PðneffÞ ¼
1 for neff ¼ nmin

0 else

+

where nmin is smaller Refng of the

particles or lower material.

The physical situation

described is only accurately
modeled if the strongly

absorbing particles are far

from interfaces

Texturing Perfectly random
surface on top

Actual:

Modeled:

Model with diffuse illumination:
Change hTa0s0 i and hRa0s0 i to hTdiff;a0s0 i and hRdiff;a0s0 i

And model with a scattering layer just below last
textured surface with:

PðneffÞ ¼
1 for neff ¼ Refnf g
0 else

+

And sint ¼ 1, and qint ¼ 1

Ignores multiple reflections at
textured surface

Perfectly random
back reflector

Actual:

Modeled:

Model with scattering layer inserted in last
layer before textured layers. Set scattering

layer as “Perfect scattering both
directions” from Table I.

Ignores multiple reflections at
textured surface

Variable Description Equations

I Scattered intensity per solid angle (1)

I0 Arbitrary normalization constant (1)

h Angle between surface normal and propagation direction (1)

T Transmitted intensity (1)

neff Effective index of scattering layer (1)

n Index of a non-scattering layer (1)

PðneffÞ Probability of scattering from a given effective index (1)

Ra0b0 Reflected intensity of light travelling from the a0th to b0 th incoherent layer (2a), (2c), (3a), (3b), (5a)–(5c)

Ta0b0 Transmitted intensity of light travelling from the a0 th to b0 th incoherent layer (2a)–(2c), (5a)–(5c)

Aa0b0 Total absorption for light travelling from the a0th to b0th incoherent layer (2c)

Rdiff;s0a0 Total integrated diffuse reflection for light traveling from the scatterer to incoherent
layer a0

(2a), (2b), (2d), (3a), (3b), (6a)–(6e)
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Variable Description Equations

Tdiff;s0a0 Total integrated diffuse transmission for light traveling from the scatterer to incoher-
ent layer a0

(2a), (2e)

Rscat Total reflection for light starting just inside the scattering layer and propagating to the

back half-space.

(2a), (2b), (2d), (6a)–(6d)

Tscat Total transmission for light starting just inside the scattering layer and propagating to
the back half-space.

(2a), (2b), (2e), (6c), (6e)

sint Ratio of the transmitted intensity to qint from the scatterer (2d), (2e), (6b), (6d), (6e)

qint Sum of the reflected light and transmitted light intensities from the scatterer (2d), (2e), (6b), (6d), (6e)

hs0 Angle between surface normal and propagation direction inside scattering material

for a given neff

(3a), (6f)

q Relative parallel component of k-vector (4a)–(4h), (5a)–(5c), (6a)

kk Parallel component of k-vector Inline only

k0 Magnitude of k-vector in free-space Inline only
~Aajb The absorption in the jth layer for light passing through the coherent stack starting

from layer a and going to layer m
(4a), (5b)

c Speed of light in vacuum (4a)

e0 Permittivity of free-space (4a)

aj Absorption coefficient in jth layer (4a)

nj Refractive index in jth layer (4a)–(4e)

E?;j Perpendicular component of electric field in jth layer (4b), (4c), (4f)

Ek;j Perpendicular component of electric field in jth layer (4d), (4e), (4g)

x Distance from front of jth layer (4a)–(4e), (4g)

dj Thickness of jth layer (4c), (4e), (4g), (4h)

rja0 Field reflection coefficient for all layers from layer j to the next incoherent layer a0 (4c), (4e), (4g), (4h)

tja0 Field transmission coefficient for all layers from layer j to the next incoherent layer a0 (4h)

tþa0 jb0 Total field transmission coefficient from the a0th layer to the jth layer, including cavity
field enhancement due to layers j through b0.

(4c), (4e), (4g), (4h)

Aa0 jb0 The absorption, in the jth layer (thin film) between any two incoherent layers, a0 and
b0, with light originating in the a0th layer and ending in the b0th layer

(5a), (6a), (4f)

Aa0 jb0 ðqÞ Absorption in jth layer (thin film) between two incoherent layers a0 and b0 where the

a0th layer is the last incoherent layer before layer j
(5a), (5b)

Aa0 Absorption for a single pass through the a0 th (incoherent) layer (5a)–(5c)

Atot
s0 z a0 Absorption in zth layer for light leaving scattering layer s0 and ending in incoherent

layer a0
(6a), (6c), (6f), (9a), (9b)

Jsc Short circuit current density (10)

k Wavelength of light in free-space (10)

SAM1:5GðkÞ Spectral power density for AM1.5G illumination (10)

h Plank’s constant (10)
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