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Abstract—This paper discusses recent developments on quan-
tum electrodynamical (QED) phenomena, such as the Casimir
effect, and their use in nanomechanics and nanotechnology in
general. Casimir forces and torques arise from quantum fluctua-
tions of vacuum or, more generally, from the zero-point energy of
materials and their dependence on the boundary conditions of the
electromagnetic fields. Because the latter can be tailored, this raises
the interesting possibility of designing QED forces for specific
applications. After a concise review of the field in an historical per-
spective, high precision measurements of the Casimir force using
microelectromechanical systems (MEMS) technology and appli-
cations of the latter to nonlinear oscillators are presented, along
with a discussion of its use in nanoscale position sensors. Then,
experiments that have demonstrated the role of the skin-depth
effect in reducing the Casimir force are presented. The dielectric
response of materials enters in a nonintuitive way in the modifica-
tion of the Casimir–Lifshitz force between dielectrics through the
dielectric function at imaginary frequencies ε(iξ). The latter is
illustrated in a dramatic way by experiments on materials that can
be switched between a reflective and a transparent state (hydrogen
switchable mirrors). Repulsive Casimir forces between solids
separated by a fluid with ε(iξ) intermediate between those of the
solids over a large frequency range is discussed, including ongoing
experiments aimed at its observation. Such repulsive forces can
be used to achieve quantum floatation in a virtually frictionless
environment, a phenomenon that could be exploited in innovative
applications to nanomechanics. The last part of the paper deals
with the elusive QED torque between birefringent materials and
efforts to observe it. We conclude by highlighting future important
directions.

Index Terms—Casimir effect, electromagnetic properties,
MEMS, microelectromechanical devices, quantum electrodynam-
ics (QED), van der Waals forces.
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I. INTRODUCTION

NANOMECHANICS is a rapidly developing research fron-
tier where basic physics and high technology converge,

opening the door to exciting and possibly revolutionary applica-
tions [1]–[4]. One goal is the observation of a variety of quantum
regimes on a mesoscopic scale; a case in point is the discovery
of the quantization of thermal conductance in nanoelectrome-
chanical systems (NEMS) [5] or the current effort in reaching
the Heisenberg limit of momentum and position measurements
in mechanical oscillators [6]–[8].

A variety of exotic quantum electrodynamical (QED) phe-
nomena can be observed when metallic and dielectric surfaces
are placed in close proximity (< 100 nm). This opens the door
to intriguing opportunities, particularly in the field of nanome-
chanics.

According to QED, quantum fluctuations of the electromag-
netic field give rise to a zero-point energy that never vanishes,
even in empty space [9]. In 1948, Casimir [10] showed that,
as a consequence, two parallel plates, made out of ideal metal
(i.e., with unity reflectivity at all wavelengths, or equivalently
with infinite plasma frequency), should attract each other in
vacuum even if they are electrically neutral, a phenomenon
known as the Casimir effect. Because only the electromagnetic
modes that have nodes on both walls can exist within the cav-
ity, the zero-point energy depends on the separation between
the plates, giving rise to an attractive force. This result, in fact,
can be interpreted as due to the differential radiation pressure
associated with zero-point energy (virtual photons) between the
“inside” and the “outside” of the plates, which leads to an at-
traction because the mode density in free space is higher than
the density of states between the plates [9]. The interpreta-
tion in terms of zero-point energy of the Casimir effect was
suggested by Niels Bohr, according to Casimir’s autobiogra-
phy [11]. An equivalent derivation of excellent intuitive value,
leading to the Casimir force formula, was recently given by Jaffe
and Scardicchio in terms of virtual photons moving along ray
optical paths [12], [13].

Between two parallel plates, the Casimir force assumes the
form [10]

Fc =
−π2h̄cA

240d4
(1)

where c is the speed of light, h̄ is Planck constant divided by
2π, A is the area of the plates, and d is their separation.

The pioneering experiments of Sparnaay [14] were not able
to unambiguously confirm the existence of the Casimir force
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due to, among other factors, the large error arising form the dif-
ficulty in maintaining a high degree of parallelism between the
plates (1). Clear experimental evidence for the effect was pre-
sented by van Blokland and Overbeek in 1978, who performed
measurements between a sphere and a plate [15], thus eliminat-
ing a major source of uncertainty. Final decisive verification is
due to Lamoureaux, who in 1997 reported the first high preci-
sion measurements of the Casimir force using a torsional pendu-
lum and sphere–plate configuration [16]. This was followed by
several experimental studies, which have produced further con-
vincing confirmation [17]–[24] for the Casimir effect including
the parallel plate geometry [21].

Between a sphere and a plate made of ideal metals, the
Casimir force reads [25]

Fc =
−π3h̄cR

360d3
(2)

where R is the radius of the sphere and d is the minimum
distance between the sphere and the plate. In the derivation of
(2), it was assumed that this distance is much smaller than the
sphere diameter.

Several reviews on Casimir forces and on the closely related
van der Waals forces have recently appeared [26]–[34].1 Both
forces are of QED origin. The key physical difference is that in
the Casimir case, retardation effects due to the finite speed of
light cannot be neglected, as in the van der Waals limit, and are
actually dominant [9]. This is true for distances so that the propa-
gation time of light between the bodies or two molecules is much
greater than the inverse characteristic frequency of the material
or of the molecules (for example, the inverse plasma frequency
in the case of metals and the inverse of the frequency of the
dominant transition contributing to the polarizabity α(ω), in the
case of molecules) [9]. The complete theory for macroscopic
bodies, developed by Lifshitz, Dzyaloshinskii, and Pitaevskii,
is valid for any distance between the surfaces of the latter and
includes, in a consistent way, both limits [35], [36].

This formulation, a generalization of Casimir’s theory to di-
electrics, including of course nonideal metals, is the one that is
most often used for comparison with experiments. In this theory,
the force between two uncharged surfaces can be derived accord-
ing to an analytical formula (often called the Lifshitz formula)
that relates the zero-point energy to the dielectric functions of
the interacting surfaces and of the medium in which they are
immersed. This equation for the force between a sphere and a
plate of the same metal is [35]

F1(z) =
h̄

2πc2
R

∫ ∞

0

∫ ∞

1

pξ2

{
ln

[
1 − (s − p)2

(s + p)2
e−2pzξ/c

]

+ln
[
1 − (s − pε)2

(s + pε)2
e−2pzξ/c

]}
dp dξ (3)

where s =
√

ε − 1 + p2, ε(iξ) is the dielectric function of the
dielectric or metal evaluated at imaginary frequency iξ, and the
integration is over all frequencies and wave vectors of the modes

1For an extensive bibliography on the Casimir effect, see http://www.
cfa.harvard.edu/∼babb/casimir-bib.html.

between the plates. The expression for ε(iξ) is given by

ε(iξ) = 1 +
2
π

∫ ∞

0

ωε′′(ω)
ω2 + ξ2

dω (4)

where ε′′(ω) is the imaginary part of the dielectric function. The
integral in (4) runs over all real frequencies, with nonnegligi-
ble contributions arising from a very wide range of frequen-
cies. Equations (3) and (4) show that the optical properties of
the material influence the Casimir force in a nonintuitive way.
The finite conductivity modifications to the Casimir force based
on the frequency dependence of the dielectric function can be
calculated numerically using the tabulated complex dielectric
function of the metal [37]–[41]. This leads to a reduction in the
Casimir force compared to the ideal metal case given by (1).
Physically, this can be understood from the fact that, in a real
metal, the electromagnetic field penetrates by an amount of the
order of the skin-depth that leads to an effective increase of the
plate separation.

The second modification, due to the roughness of the metallic
surfaces, tends to increase the attraction [42]–[44] because the
portions of the surfaces that are locally closer contribute much
more to the force due its strong nonlinearity with distance.

As previously mentioned, at very short distances, the theory of
Lifshitz, Dzyaloshinskii, and Pitaevskii also provides a complete
description of the nonretarded van der Waals force [45], [46].
Recently, Henkel et al. [47] and Intravaia and Lambrecht [48]
have provided a physically intuitive description of the van der
Waals limit for real metals with dispersion described by the
Drude model. At finite plasma frequency, one must include
surface plasmons in the counting of electromagnetic modes,
i.e., modes associated with surface charge oscillations that ex-
ponentially decay away from the surface. At short distances
(small compared to the plasma wavelength), the Casimir en-
ergy is given by the shift in the zero-point energy of the surface
plasmons due to their Coulomb (electrostatic) interaction. The
corresponding attractive force between two parallel plates is,
then, given by [49]

Fc = − h̄cπ2A

290λpd3
. (5)

This formula is an approximation of the short distance limit of
the more complete theory [35], [36].

At large separations (d � λp), retardation effects give rise to
a long-range interaction that, in the case of two ideal metals in
vacuum, reduces to Casimir’s result.

In a number of studies, several authors [19], [22], [23] have
claimed agreement between Casimir force experiments and the-
ory at the 1% level or better—a claim that has been challenged in
some of the literature [20], [50]–[52]. The authors of [52] have
pointed out that the strong nonlinear dependence of the force on
distance limits the precision in the absolute determination of the
force. Uncertainties in the knowledge of the dielectric functions
of the thin metallic films used in the experiments and in the
models of surface roughness used to correct the Lifshitz theory
also typically give rise to errors larger than 1% in the calculation
of the expected force [20], [51], [52]. It has also been shown that
the calculation of the Casimir force can vary by as much as 5%
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depending on which values are chosen for the optical properties
of a given material [53]. Another uncertainty is related to the
model of surface roughness and in its measurement that trans-
lates to an uncertainty in the comparison between theory and
experiments. We conclude that claims of agreement between
theory and experiment at the 1% level or less are questionable
due to experimental errors and uncertainties in the calculations.

Apart from its intrinsic theoretical interest, the Casimir in-
teraction has recently received considerable attention for its
possible technological consequences. The Casimir force, which
rapidly increases as the surface separation decreases, is the dom-
inant interaction mechanism between neutral objects at submi-
cron distances. In light of the miniaturization process that is
moving modern technology toward smaller electromechanical
devices, it is reasonable to ask what role the zero-point energy
might play in the future development of micro- and nanoelec-
tromechanical systems (MEMS and NEMS) [24], [54], [55].
The first experimental works related to this topic were per-
formed at Bell Laboratories by two of the authors and their
collaborators [24], [55].

The goal of their first experiment [24] was to design a mi-
cromachined torsional device that could be actuated solely by
the Casimir force. The results not only demonstrated that this
is, indeed, possible, but also provided one of the most sensi-
tive measurements of the Casimir force between metallized sur-
faces. In their second experiment [55], the group showed that the
Casimir attraction can also influence the dynamical properties
of a micromachined device, changing its resonance frequency
and giving rise to hysteretic behavior and bistability in its fre-
quency response to an ac excitation, as expected for a nonlinear
oscillator. They proposed that this device could serve as a nano-
metric position sensor. The aforementioned developments are
covered in Section II.

A particularly interesting direction of research on Casimir–
Lifshitz forces is the possibility of designing their strength and
spatial dependence by a suitable control of the boundary condi-
tions of the electromagnetic fields. This can be done by an appro-
priate choice of the materials [56], of the thickness of the metal
films [57], and of the shape of the interacting surfaces [58]–[60].
By coating one of the surfaces with suitably engineered thin
films, the influence of visible and infrared virtual photons in
the Casimir interaction and the role of the skin-depth effect in
Casimir forces can be explored, as discussed in Section III.

Section III also covers one of the most interesting features
of long-range QED forces: the possibility of repulsive forces
that can arise between suitable surfaces when their dielectric
functions and that of the medium separating them satisfy a
particular inequality [36], [45], [46]. Methods of measuring
these forces and the phenomenon of “quantum floatation” are
discussed along with intriguing applications to nanotechnology
such as frictionless bearings and related devices.

QED can give rise to other exotic macroscopic interaction
phenomena between materials with anisotropic optical proper-
ties such as birefringent crystals. For example, a torque due to
quantum fluctuations between plates made of uniaxial materials
has been predicted but has not yet been observed [61], [62].
Section IV is devoted to a discussion of this remarkable ef-

Fig. 1. MEMS Casimir force detection setup. Schematic of the experiment
(not to scale) and scanning electron micrographs of the micromachined torsional
device used for the measurement of the Casimir force with a closeup of one of
the torsional rods anchored to the substrate. As the metallic sphere approaches
the top plate, the Casimir force causes a rotation of the torsional rod.

fect and related calculations. Specific experiments are proposed
along with novel applications. Section V provides an outlook
on novel directions in this field.

II. MEMS BASED ON THE CASIMIR FORCE

MEMS are a silicon-based integrated circuit technology with
moving mechanical parts that are released by means of etching
sacrificial silicon dioxide layers followed by a critical point dry-
ing step [63]. They have been finding increasing applications in
several areas ranging from actuators and sensors to routers for
optical communications. For example, the release of the airbag
in cars is controlled by a MEMS-based accelerometer. In the area
of lightwave communications, the future will bring about new
optical networks with a mesh topology, based on dense wave-
length division multiplexing. These intelligent networks will
be adaptive and self-healing with capabilities of flexible wave-
length provisioning, i.e., the possibility to add and drop wave-
lengths at specific nodes in response to real-time bandwidth de-
mands and rerouting. The lambda router [64], [65], a device con-
sisting of an array of thousands of voltage-controlled mirrors,
which switches an incoming wavelength from one optical fiber
to any of many output fibers, is an example of a potentially dis-
ruptive MEMS technology that might impact future networks.

The development of increasingly complex MEMS will lead
to more attention to scaling issues, as this technology evolves
toward NEMS. Thus, it is conceivable that a Moore curve for
MEMS will develop leading to increasingly complex and com-
pact MEMS having more devices in close proximity [66], [67].
This scenario will inevitably lead to having to face the issue of
Casimir interactions between metallic and dielectric surfaces in
close proximity with attention to potentially troublesome phe-
nomena such as stiction, i.e., the irreversible coming into contact
of moving parts due to Casimir/van der Waals forces [66]. On the
other hand, such phenomena might be usable to one’s advantage
by adding functionality to NEMS-based architectures.

A. Actuators

In the first experiment [24], the authors designed and demon-
strated a micromachined torsional device that was actuated by
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Fig. 2. Experimental measurement of the Casimir force from the MEMS tor-
sional apparatus. Angle of rotation of the top plate in response to the Casimir
force as a function of distance. (Red line) Predicted Casimir force (2) without
corrections for surface roughness or finite conductivity. (Blue Dots) Experimen-
tal results.

the Casimir force and that provided a very sensitive measure-
ment of the latter. This device (Fig. 1) was subsequently used
in a variety of experiments [22], [57], [68]. It consists of a
3.5-µm-thick, 500-µm-square heavily doped polysilicon plate
freely suspended on two of its opposite sides by thin torsional
rods. The other ends of the torsional rods are anchored to the
substrate via support posts. Two fixed polysilicon electrodes are
located symmetrically underneath the plate, one on each side
of the torsional rod. Each electrode is half the size of the top
plate. There is a 2 µm gap between the top plate and the fixed
electrodes created by etching a SiO2 sacrificial layer. The top
plate is, thus, free to rotate about the torsional rods in response
to an external torque.

A schematic of the actuation mechanism based on the Casimir
force is shown in Fig. 1. A polystyrene sphere with radius R =
100 µm is glued at the end of a copper wire using conductive
epoxy. A 200-nm-thick film of gold with a thin titanium adhesion
layer is evaporated on both the sphere and the top plate of
the torsional device. An additional 10 nm of gold is sputtered
on the sphere to provide electrical contact to the wire. The
micromachined device is placed on a piezoelectric translation
stage with the sphere positioned close to one side of the top
plate. As the piezo extends, it moves the micromachined device
toward the sphere. The rotation of the top plate in response to the
attractive Casimir force is detected by measuring the imbalance
of the capacitances of the top plate to the two bottom electrodes
at different separations between the sphere and the top plate.
The measurement is performed at room temperature and at a
pressure of less than 1 mtorr. Note that an external bias needs to
be applied to the sphere to compensate for the patch potential V0

resulting from work function differences between the metallic
surfaces and other effects such as contact potentials associated
with grounding, etc. [15]. The value of V0 is typically in the
range of 10–100 mV.

Fig. 2 shows the results of that measurement. One sees that
the data points lie above the curve given by (2). Two main ef-
fects are at work in this discrepancy. The first one is the finite

Fig. 3. Simple model of the nonlinear Casimir oscillator (not to scale) (inset).
Elastic potential energy of the spring (dotted line, spring constant 0.019 Nm−1),
energy associated with the Casimir attraction (dashed line), and total potential
energy (solid line) as a function of plate displacement. The distance d between
the sphere (100 µm radius) and the equilibrium position of the plate in the
absence of the Casimir force is chosen to be 40 nm.

reflectivity of any metal. This causes virtual photons associated
with vacuum fluctuations to penetrate into the metal (skin effect)
increasing the effective sphere–plate separation, thus decreasing
the force. The second effect is the surface roughness estimated
from atomic force microscope (AFM) measurements to be a few
tens of nanometers depending on the particulars of the experi-
ment. It enhances the Casimir force due to the strong nonlinear
dependence with distance. Both effects can be accounted for
within the framework of Lifshitz theory, giving a much smaller
discrepancy between theory and experiments [52].

A bridge circuit enables one to measure the change in ca-
pacitance to 1 part in 2× 105, equivalent to a rotation angle
of 8× 10−8 rad, with integration time of 1 s when the de-
vice is in vacuum. With a torsional spring constant as small
as 1.5× 10−8Nm rad−1, the device yields a sensitivity of 5 pN
Hz−1/2 for forces acting at the edge of the plate. Such force sen-
sitivity is comparable to the resolution of conventional AFMs.
The device is insensitive to mechanical noise from the surround-
ings because the resonant frequency is maintained high enough
(∼2 kHz) due to the small moment of inertia of the plate.

B. Nonlinear Oscillators

While there is vast experimental literature on the hysteretic
response and bistability of nonlinear oscillators in the context
of quantum optics, solid state physics, mechanics, and electron-
ics, the experiment summarized in this section represents, to
our knowledge, the first observation of bistability and hystere-
sis caused by a QED effect. A simple model of the Casimir
oscillator consists of a movable metallic plate subjected to the
restoring force of a spring obeying Hooke’s law and the non-
linear Casimir force arising from the interaction with a fixed
metallic sphere (Fig. 3). For separations d larger than a critical
value [69], the system is bistable: the potential energy consists of
a local minimum and a global minimum separated by a potential
barrier (Fig. 3). The local minimum is a stable equilibrium po-
sition, about which the plate undergoes small oscillations. The
Casimir force modifies the curvature of the confining potential
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Fig. 4. (a) Hysteresis in the frequency response induced by the Casimir force
on an otherwise linear oscillator. Hollow squares (solid circles) are recorded
with increasing (decreasing) frequency. (Solid lines) The predicted frequency
response of the oscillator. The distance d between the oscillator and the sphere is
3.3 µm, 141 nm, 116.5 nm, and 98 nm for peaks I, II, III, and IV, respectively. The
excitation amplitude is maintained constant at 55.5 mV for all four separations.
The solid lines are the calculated response. The peak oscillation amplitude for
the plate is 39 nm at its closest point to the sphere. (b) Oscillation amplitude as
a function of distance with excitation frequency fixed at 2748 Hz.

around the minimum, thus changing the natural frequency of
oscillation, and also introduces higher order terms in the poten-
tial, making the oscillations anharmonic.

For this experiment, the same device as in Fig. 1 was used. The
torsional mode of oscillation was excited by applying a driving
voltage to one of the two electrodes that is fixed in position under
the plate. The driving voltage is a small ac excitation Vac with a
dc bias Vdc1 to linearize the voltage dependence of the driving
torque. The top plate is grounded while the detection electrode
is connected to a dc voltage Vdc2 through a resistor. Oscillatory
motion of the top plate leads to a time-varying capacitance
between the top plate and the detection electrode. For small
oscillations, the change in capacitance is proportional to the
rotation of the plate. The detection electrode is connected to an
amplifier and a lock-in amplifier measures the output signal at
the excitation frequency.

To demonstrate the nonlinear effects introduced by the
Casimir force, the piezo was first retracted until the sphere
was more than 3.3 µm away from the oscillating plate so
that the Casimir force had a negligible effect on the oscilla-
tions. The measured frequency response shows a resonance peak
that is characteristic of a driven harmonic oscillator (peak I in
Fig. 4(a)), regardless of whether the frequency is swept up (hol-
low squares) or down (solid circles). This ensures that the excita-
tion voltage is small enough so that intrinsic nonlinear effects in
the oscillator are negligible in the absence of the Casimir force.
The piezo was, then, extended to bring the sphere close to the top
plate while maintaining the excitation voltage at fixed amplitude.
The resonance peak shifts to lower frequencies (peaks II, III, and
IV) by an amount that is consistent with the distance dependence
of the force in Fig. 2. Moreover, the shape of the resonance peak
deviates from that of a driven harmonic oscillator and becomes
asymmetric. As the distance decreases, the asymmetry becomes

stronger and hysteresis occurs. This reproducible hysteretic be-
havior is characteristic of strongly nonlinear oscillations [70].

The solid lines in Fig. 4(a) show the predicted frequency
response of the oscillator including the first, second, and third
spatial derivatives of the Casimir force. Higher orders terms or
the full nonlinear potential would need to be included to achieve
a better agreement with experiments.

An alternative way to demonstrate the “memory” effect of the
oscillator is to maintain the excitation at a fixed frequency and
vary the distance between the sphere and the plate (Fig. 4(b)).
As the distance changes, the resonance frequency of the oscil-
lator shifts to first order because of the changing force gradient.
In region 1, the fixed excitation frequency is higher than the
resonance frequency and vice versa for region 3. In region 2,
the amplitude of oscillation depends on the history of the plate
position. Depending on whether the plate was in region 1 or
region 3 before it enters region 2, the amplitude of oscillation
differs by up to a factor of 6. This oscillator, therefore, acts as
a nanometric sensor for the separation between two uncharged
metallic surfaces.

III. DESIGN AND CONTROL OF CASIMIR FORCES

In this section, we discuss experiments aimed at tailoring the
Casimir–Lifshitz force via control of the boundary conditions of
the electromagnetic fields. Several examples will be discussed:
(1) control of the thickness of the metallic layers deposited on
the juxtaposed surfaces and (2) choice of materials that: (a) can
be reversibly switched from metallic to transparent and (b) give
rise to repulsive Casimir–Lifshitz force when separated by a
suitable liquid.

A. Measurement of the Casimir Force Between Metallic Films:
Skin-Depth Effect

The use of ultrathin metallic coatings (i.e., of thickness
comparable to the skin-depth at wavelengths comparable to the
distance between the surfaces) over transparent dielectrics, as
opposed to thick layers, as employed in the experiments of Sec-
tion II, should alter the distance dependence of the force.

At submicron distances, the Casimir force critically depends
on the reflectivity of the interacting surfaces for wavelengths in
the ultraviolet to far-infrared [35], [68]. The attraction between
transparent materials is expected to be smaller than that between
highly reflective mirrors as a result of a less effective confine-
ment of electromagnetic modes inside the optical cavity defined
by the surfaces. A thin metallic film can be transparent to electro-
magnetic waves that would otherwise be reflected by bulk metal.
In fact, when its thickness is much less than the skin-depth, most
of the light passes through the film. Consequently, the Casimir
force between metallic films should be significantly reduced
when its thickness is less than the skin-depth at ultraviolet to
infrared wavelengths. For most common metals, this condition
is reached when the thickness of the layer is ∼ 10 nm.

The technique presented in [68] was recently perfected in
terms of the calibration method used and allowed the accurate
measurement of the Casimir force for different metal film thick-
ness on the sphere [57].
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Fig. 5. Comparison between Casimir force measurements and calculations
for a sphere–plate geometry. (Filled circles) Data obtained with a thick metallic
film deposited on the sphere. (Open circles) Data for a thin film. (Continuous
and dashed lines) Theoretical predictions for thick and thin films, respectively.

Demonstrating the skin-depth effect requires careful control
of the thickness and surface roughness of the films. The sphere
was glued to its support and subsequently coated with a 2.92 nm
titanium adhesion layer and a 9.23 nm film of palladium. The
thickness of the titanium layer and the palladium film was mea-
sured by Rutherford backscattering on a silicon slice that was
evaporated in close proximity to the sphere. After evaporation,
the sphere was imaged with an optical profiler to determine
its roughness, and mounted inside the experimental appara-
tus. After completion of the Casimir force measurements, the
sphere was removed from the experimental apparatus, coated
with an additional 200 nm of palladium, analyzed with the op-
tical profiler, and mounted back inside the vacuum chamber
for another set of measurements. It is important to stress that
the surface roughness measured before and after the deposi-
tion of the thicker palladium layer was the same within a few
percent.

In Fig. 5, the results of the thin-film measurements are com-
pared with those obtained after the evaporation of the thick
layer of palladium. The measurements were repeated 20 times
for both the thin and thick films. The results clearly demonstrate
the skin-depth effect on the Casimir force. The force measured
with the thin film of palladium is, in fact, smaller than that ob-
served after the evaporation of the thicker film. Measurements
were repeated with a similar sphere: the results confirmed the
skin-depth effect. To rule out possible spurious effects, the data
were compared with a theoretical calculation (Fig. 5) based on
the Lifshitz theory that includes the dielectric function of the
metallic coatings and the effects of the surface roughness. The
magnitude and spatial distribution of the latter was measured
with an optical profilometer and incorporated in the modified
Lifshitz equation [44], [57], [71]. The dielectric functions used
in the calculation were obtained from [39]–[41] and [72], and a
suitable modification of Lifshitz’s theory to account for multiple
thin films was used [45].

Fig. 6. Casimir force between a gold-coated plate and a sphere coated with a
HSM as a function of the distance, in air (green dots) and in argon–hydrogen
(red dots). HSM in air and in hydrogen (inset). A similar mirror was deposited
on the sphere of our experimental apparatus.

The discrepancy observed in the case of the thin metallic film
is not surprising. The calculation of the force is based on two
approximations: (1) the dielectric function for the metallic layers
(both titanium and palladium) is assumed to be equal to the one
tabulated for bulk-materials and (2) the model used to describe
the dielectric function of polystyrene is limited to a simplified
two-oscillator approximation [72]. These assumptions can lead
to significant errors in the estimated force.

B. Hydrogen Switchable Mirrors

Using the experimental setup described in Section II, the
Casimir force between a gold-coated plate and a sphere coated
with a hydrogen switchable mirror (HSM) [73] was measured
for separations in the 70–400 nm range [68]. The HSMs were
obtained by repeating seven consecutive evaporations of alter-
nate layers of magnesium (10 nm) and nickel (2 nm), followed
by an evaporation of a thin film of palladium (5 nm). The inset
of Fig. 6 shows a glass slide coated according to this procedure,
both in its as-deposited state and in its hydrogenated state. It is
evident that the optical properties of the film are very different
in the two situations. The transparency of the film was mea-
sured over a wavelength range between 0.5 and 3 µm, and its
reflectivity at λ = 660 nm, keeping the sample in air and in an
argon–hydrogen atmosphere (4% hydrogen). The results are in
good agreement with the values reported in [74].

The results of Casimir force measurements obtained in air
and in a hydrogen-rich atmosphere are shown in Fig. 6. It is
evident that the force does not change in a discernible way upon
hydrogenation of the HSM [68].

In order to explain this apparently surprising result, one
should first note that the dielectric properties of the HSMs used
in this experiment are known only in a limited range of wave-
lengths, spanning approximately the range 0.3–2.5 µm [74].
However, because the separation between the sphere and the
plate in the experiment is in the 100 nm range, one could expect
that it is not necessary to know the dielectric function for λ > 2.5
µm, because those modes should not give rise to large contri-
butions to the force. A mathematical analysis carried out using
ad hoc models to describe the interacting surfaces has shown
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that this is not necessarily the case. Because the Casimir force
depends on the dielectric function at imaginary frequency (4)
and the integral in the latter is over all frequencies, long wave-
lengths compared to the separation between the sphere and the
plate can make a significant contribution to the force. Thus, one
of the reasons for not having observed a change in the latter upon
hydrogenation is likely related to the fact that that the imaginary
part of the permittivity might not change significantly at long
wavelengths. Recently, a more accurate analysis of the exper-
iment [75] confirmed this result, but also added an important
detail: for a correct comparison of data with theory, it is nec-
essary to also take into account the presence of the 5-nm-thick
palladium layer that was deposited on top of the HSMs to pre-
vent oxidation and promote hydrogen absorption. Although this
layer is fairly transparent to all wavelengths from ultraviolet to
infrared, its contribution to the interaction reduces the expected
change of the force by nearly a factor of 2. It is, thus, the combi-
nation of the effect of the reflectivity at long wavelengths and of
the thin palladium film that limits the magnitude of the change of
the force following hydrogenation. Still, calculations show that
a small change in the Casimir force upon hydrogenation should
be observable with improved experimental precision and with
the use of HSMs of different composition [75].

C. Casimir Levitation

Modification of the Casimir force is of great interest from both
a fundamental and an applied point-of-view. It is reasonable to
ask whether such modifications can lead to repulsive forces
in special cases. In 1968, Boyer showed that for a perfectly
conducting spherical shell, the Casimir effect should give rise
to an outward pressure [76]. Similar repulsive Casimir forces
have also been predicted for cubic and rectangular cavities with
specific aspect ratios [77], [78]. However, criticisms concerning
these results have been raised [79] and, recently, the possibility
of repulsive forces based on topology for a wide class of systems
have been ruled out [80].

The possibility of topological repulsive Casimir forces, i.e.,
due to the confinement of quantum fluctuations of the electro-
magnetic fields in vacuum because of the geometrical structure
of the interacting metallic bodies, is therefore controversial. In
this section, we will describe a repulsive force that is strictly
due to the optical properties of the materials involved. Such a
mechanism is responsible for many phenomena in the nonre-
tarded regime including the surface melting of solids [81] and
the vertical ascent of liquid helium within a container (see, for
example, the discussion in [28]).

The Casimir–Lifshitz force is always attractive between two
identical materials; however, the force can become repulsive
when two different materials are submerged in a third medium
if their dielectric functions, evaluated at imaginary frequency,
obey the following relationship [45], [46]:

ε1(iξ) < ε3(iξ) < ε2(iξ)

or

ε2(iξ) < ε3(iξ) < ε1(iξ) (6)

Fig. 7. Dielectric functions for four materials evaluated at imaginary fre-
quency (iξ). Schematic of the arrangement in which materials 1, 2, 3 are, re-
spectively, gold, silica, and ethanol (inset). This sequence results in a repulsive
Casimir–Lifshitz force between materials 1 and 2 because of the relative order-
ing of the dielectric functions: ε2(iξ) < ε3(iξ) < ε1(iξ) at most frequencies.

TABLE I
HAMAKER CONSTANTS FOR VARIOUS MATERIAL COMBINATIONS

where ε1 and ε2 are the dielectric functions of the two outer
materials and ε3 is the dielectric function of the intervening
material, as shown in the inset of Fig. 7. A repulsive interac-
tion should be possible for many combinations of conventional
materials as described later.

To give a more quantitative description of these forces,
we have calculated the Hamaker constants as well as the full
Casimir–Lifshitz force as a function of distance for several
material combinations. The Hamaker constant A132 can be used
to describe the magnitude and sign of the nonretarded (close
range) van der Waals interaction between two objects (1 and
2) immersed in a third medium and depends on the dielectric
functions of the materials involved [45], [82]. For instance, the
van der Waals force between a sphere and a plate immersed in
a liquid is given byF = −A123R/6d2, where R is the radius
of the sphere and d is the separation between the sphere and
the plate. Using this convention, a negative Hamaker constant
corresponds to a positive, repulsive force. Table I shows the
Hamaker constants for several material configurations, which
should yield a repulsive interaction. Such materials were chosen
because their dielectric functions obey (6) and are in common
use for technological applications. The dielectric functions of
these materials and of the intervening medium were obtained
from [37]–[39] and [83]–[85]. For a complete description of the
force at all distances, the full Lifshitz equation must be solved.
This was done for a 100-µm-radius gold sphere above a silica
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Fig. 8. Calculations of attractive and repulsive forces. The force calculations
between gold and either silica or PTFE across vacuum or ethanol were obtained
using the full Lifshiftz theory. Attractive forces have a negative sign for the
force, while repulsive interactions have a positive sign.

or polytetrafluoroethylene (PTFE, a generic form of Teflon)
plate immersed in ethanol, as shown in Fig. 8. It can be seen
from this figure that the combinations gold–ethanol–silica and
gold–ethanol–PTFE give rise to a repulsive interaction while
attractive interactions result when the intervening material is
vacuum or when the two outer objects (1 and 2) are made of
the same material.

Inequality (6) can also be used to predict the sign of the force.
Fig. 7 shows ε(iξ) for gold, PTFE, silica, and ethanol (note
that, for vacuum, ε(iξ) = 1). From Figs. 7 and 8, also note that
when inequality (6) is satisfied over a majority of frequencies,
the interaction is repulsive and, when it is not satisfied, the
interaction is attractive. For very high frequencies, the differ-
ences in ε(iξ) for different materials become small and, in some
cases, there is a crossover where the inequality is no longer sat-
isfied even if it was for lower frequencies. If this contribution
to the force is small, this crossover is unimportant; however, if
this crossover occurs at a low-enough frequency or results in
a significant difference in ε(iξ) for frequencies higher than the
crossover, the force may be significantly affected and cause a
change in the sign with distance. This is a result of the fact that
higher frequency contributions contribute more to short-range
interactions and lower frequency contributions contribute more
to long-range interactions. This type of behavior can be found,
for example, with the combination of barium titanate and calcite
immersed in ethanol, as described in [86].

D. Devices Based on Repulsive Casimir Forces

Repulsive Casimir–Lifshitz forces could be of significant in-
terest technologically as this technique might be used to de-
velop ultrasensitive force and torque sensors by counterbalanc-
ing gravity to levitate an object immersed in fluid above a surface
without disturbing electric or magnetic interactions. Because the
surfaces never come into direct contact as a result of their mutual
repulsion, these objects are free to rotate or translate relative to
each other with virtually no static friction. Dynamical damping
due to viscosity will put limits on how quickly such a device
can respond to changes in its surroundings; however, in princi-
ple, even the smallest translations or rotations can be detected
on longer time scales. Thus, force and torque sensors could be

Fig. 9. QED floatation device. A repulsive force develops between the disk
immersed in a fluid and the plate, which is balanced by gravity. We show a nano-
compass that could be developed to mechanically sense small magnetic fields.

Fig. 10. Schematic setup for detecting the Casimir force via an AFM. A laser
is reflected off the back of a microcantilever, on which a sphere is attached and
metallized. The reflected beam is detected on a split quadrant photodetector,
which monitors the cantilever’s deflection caused by any vertical force.

developed that surpass those used currently. Fig. 9 shows an
example of a QED floatation device: a nano-compass sensitive
to very small static magnetic fields [87].

E. AFM Measurement Technique

To measure attractive and repulsive Casimir–Lifshitz forces
in fluids, a detection scheme using an AFM can be employed.
Previous experiments have been performed using an AFM to
measure close-range van der Waals forces in fluid (see, for ex-
ample, [88]),2 or the long-range Casimir force in vacuum [17]–
[19]. By modification of these techniques, long-range interac-
tions can be measured in fluidic environments.

A schematic of the typical AFM force apparatus is shown in
Fig. 10. A large sphere (diameter between 50 and 200 µm) is at-
tached, using a conductive epoxy, to a standard micro-cantilever
used for contact mode imaging. The sphere and cantilever chip

2Indications of the existence of close-range (approximately a few nanometers)
repulsive van der Waals forces have been reported in [83], [89], and [90].
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Fig. 11. Data and calibration procedures for determining the Casimir force
interaction using an AFM. (a) Cantilever deflection measurements and electro-
static calibration procedure performed in air. Cantilever deflection as a function
of voltage applied between the tip and the sample to determine the contact
potential (inset). (b) Resulting Casimir force versus distance determined from
the calibration procedure and measurements of (a). (c) Cantilever deflection
measurements in ethanol using a hydrodynamic calibration. The linear slope,
most visible at large piezo displacements, in (a) and (c) is an artifact due to laser
deflection as described in the text.

are coated with a metallic layer and attached to a piezoelectric
column to control vertical displacement from the surface of a
plate (which is either metallic or dielectric). The extension of the
piezoelectric column is detected via a linear variable differential
transformer (LVDT), which is necessary for accurate detection
of displacements to avoid nonlinearities and hysteresis inher-
ent in piezoelectrics. A laser is projected onto the back of the
cantilever and is reflected onto a four-quadrant photodetector.
Vertical deflections of the cantilever can be detected by moni-
toring the difference signal between the top two quadrants and
the bottom two quadrants of the detector. Calibration procedures
are, then, used to convert the deflection difference signal into a
force [17], [91]–[94].

For metal objects in air or vacuum, electrostatic forces can
be used to determine the spring constant [17]. For this method,
the plate is electrically grounded to the AFM while a voltage
with respect to this ground is applied to the sphere. The elec-

Fig. 12. QED torque develops between two birefringent parallel plates with
in-plane optical axis when they are placed in close proximity.

trostatic force between a sphere and a plate at separation d and
electrostatic potential difference ∆V is

Felectrostatic = −πεoR

d
∆V 2 (7)

where εo is the vacuum permittivity. Fig. 11(a) shows the can-
tilever deflection versus piezo displacement for ∆V = 0 and
∆V = ±200 mV. It should be noted that a linear artifact that
results from the curvature of the cantilever and the reflection
of the laser is also present in Fig. 11(a) and (c). These effects,
which are well known, are independent of the sphere–plate sepa-
ration and are removed from the analysis. The resulting Casimir
interaction, after calibration, is shown in Fig. 11(b) for a 50-µm-
diameter sphere coated with gold above a gold-coated plate.

When measurements are made between materials (metals or
dielectrics) in fluids, electrostatic interactions are greatly re-
duced by the intervening fluid. In this case, hydrodynamic forces
can be used for calibration and determination of the cantilever
spring constant [94]. The hydrodynamic force between a sphere
and a plate is

Fhydrodynamic =
6πηv

d
R2 (8)

where η is the fluid viscosity and v is the velocity of the sphere
in the direction of the plate. Fig. 11(c) shows the cantilever
deflection as a function of piezo displacement for a 50-µm
gold-coated sphere in ethanol above a gold plate moving with
piezo velocities of 5 µm/s and 50 nm/s, where the former is used
with (8) for calibration, and the latter is used to determine the
Casimir force when the hydrodynamic drag is negligible (i.e., for
slow piezo velocities). Future experiments will involve probing
the Casimir–Lifshitz interaction between different materials in
fluid.

IV. QED TORQUE

The effect of the zero-point energy between two optically
anisotropic materials, as shown in Fig. 12, has also been con-
sidered [61], [62], [86], [95]–[100]. In this case, the fluctuating
electromagnetic fields have boundary conditions that depend
on the relative orientation of the optical axes of the materials;
hence, the zero-point energy arising from these fields also has
an angular dependence. This leads to a torque that tends to align
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Fig. 13. (a) Calculated torque as a function of angle between a 40 µm diameter
disk made of calcite and a barium titanate plate separated in vacuum by a distance
d = 100 nm. The lines represent a fit with (9). (b) Calculated retarded van der
Waals force as a function of plate separation for this system at a rotation angle
of π/4. The arrow represents the distance at which the retarded van der Waals
repulsion is in equilibrium with the weight of the disk.

two of the principal axes of the materials in order to minimize
the system’s energy. We have recently shown that such torques
should, indeed, be measurable and have suggested experimental
configurations to perform these measurements [86], [95].

In 1972, Parsegian and Weiss derived an expression for
the short-range, nonretarded van der Waals interaction energy
between two semi-infinite dielectrically anisotropic materials
immersed within a third material [61]. This result, obtained by
the summation of the electromagnetic surface mode fluctuations,
showed that the interaction energy was inversely proportional to
the separation squared and depended on the angle between the
optical axes of the two anisotropic materials. In 1978, Barash
independently derived an expression for the interaction energy
between two anisotropic materials using the Helmholtz free
energy of the electromagnetic modes, which included retarda-
tion effects [62]. In the nonretarded limit, Barash’s expression
confirmed the inverse square distance dependence of Parsegian
and Weiss and that the torque, in this limit, varies as sin (2θ),
where θ is the angle between the optical axes of the materials.

The equations that govern the torque in the general case of
arbitrary distances are quite cumbersome and are treated in detail
elsewhere [62], [86]. For brevity, we refer the reader to those
papers for a more in-depth analysis and simply state a few of the
relevant results. First, the torque is proportional to the surface
area of the interacting materials and decreases with increasing
surface separation. Second, it is found that the QED torque at a
given distance varies as

M = A sin(2θ) (9)

even in the retarded limit, where A is the value of the torque
at θ = π/4. Fig. 13(a) shows the torque as a function of angle
for a 40-µm-diameter calcite disk in vacuum above a barium

titanate plate at a distance of d = 100 nm [86]. The circles
correspond to the calculated values of the torque, while the
solid line corresponds to a best fit with (9).

Experimentally, it is difficult to use large disks in close prox-
imity, because at such small separations, tolerances in the par-
allelism of two large surfaces (tens of microns in diameter) are
extremely tight; in addition, it is difficult to keep them free
of dust and contaminants. If the vacuum is replaced by liquid
ethanol, the torque remains of the same order of magnitude;
however, the three materials (calcite, ethanol, and barium ti-
tanate) have dielectric functions that obey (6). This will result
in a repulsive Casimir–Lifshitz force that will counterbalance
the weight of the disk and allow it to float at a predetermined
distance above the plate. For a 20-µm-thick calcite disk with a
diameter of 40 µm above a barium titanate plate in ethanol, the
equilibrium separation was calculated to be approximately 100
nm with a maximum torque of ∼ 4× 10−19N m [86], as shown
in Fig. 13(b).

For the observation of the QED torque, it was suggested in
[86] that the disk be rotated by θ = π/4 by means of the transfer
of angular momentum of light from a polarized beam. The laser
could, then, be shuttered, and one would visually observe the
rotation of the disk back to its minimum energy orientation. The
amount of angular momentum transfer determines the initial
value of the angle of rotation. After the laser beam is blocked,
the disk can rotate either clockwise or counterclockwise back
to the equilibrium position depending on the value of the initial
angle, making it possible to verify the sin(2θ) dependence of
the torque. Procedures to minimize the effect of charges on the
plates and other artifacts were also discussed [86].

An alternative scheme involving the statistical analysis of
Brownian motion was recently described in [95]. For this situa-
tion, the disk size is reduced to the point that Brownian motion
causes translation and rotation. When these rotations become
comparable to the QED rotation, the disk will no longer rotate
smoothly to its minimum energy configuration. Instead, the an-
gle between the optical axes will fluctuate to sample all angles.
The probability distribution for the observation of the angle θ
between the two optical axes is

p(θ) = po exp
[
−U(θ)
kBT

]
(10)

where U(θ) is the potential energy of the QED orientation in-
teraction, i.e., the energy associated with the torque, kBT is
the thermal energy, po is a normalization constant such that∫

p(θ) dθ = 1. By observing the angle between the axes as
a function of time, one can deduce the probability distribu-
tion via a histogram of the angular orientations, as shown in
Fig. 14. This is similar to the determination of the potential
energy as a function of distance in total internal reflection mi-
croscopy (TIRM) experiments for optically trapped spherical
particles [101], [102].

To observe this effect, one needs to levitate a birefringent disk
above a birefringent plate at short range and be able to detect
the orientation of the axes. This can be done either by using
a repulsive Casimir–Lifshitz force or a double-layer repulsion
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Fig. 14. QED interaction energies and probabilities. (a) Calculations of the
angular dependence of the QED interaction energy between a 2-µm-diameter
LiNbO3 disk and a calcite plate. (b) Probability of detecting the rotation angle
θ. (c) Energy as a function of separation between the disk and plate including
contributions from the double layer interaction (dominant at close range), the
Casimir–Lifshitz interaction (dominant at longer range), and gravity (negligi-
ble). Equilibrium is obtained around 50 nm.

force [46], [103] and video microscopy techniques [104] as
described later.

The equilibrium separation occurs when the sum of the
forces (Casimir–Lifshitz, double layer, and weight) acting on
the particle is zero

∑
F = FCL(d) + D × exp

[
−d

l

]
− πR2h ∆ρg = 0 (11)

where FCL(d) is the Casimir–Lifshitz force at distance d, D is
a constant related to the Poisson–Boltzmann potential evaluated
at the surface due to charging, l is the Debye length, R is the
radius of the disk, h is the thickness of the disk, ∆ρ is the
density difference between the disk and the solution, and g is
the acceleration due to gravity. Both the Casimir–Lifshitz force
and the weight of the disks are set by the geometry of the system
and the materials chosen; however, the double layer force can
be modified by changing the electrolyte concentration. Thus,
the floatation height can be adjusted in this way. Fig. 14(c)
shows the approximate interaction energy following from the

Fig. 15. Schematic of the Brownian motion detection scheme showing data for
a non-birefringent spherical particle. Light is recorded via a CCD and digitized
to allow for tracking and determination of intensity fluctuations.

forces of (11), where we have chosen a double-layer inter-
action leading to a levitation height of approximately 50 nm,
with deviations of a few nanometers due to thermal energy
(kBT ), for a lithium niobate disk with radius R = 1µm and
thickness h = 0.5 µm in an aqueous solution above a calcite
plate.

In order to track the motion of the disk above the plate, a
video microscopy setup similar to the one described in [104]
is currently being used by the Harvard University group [95].
The disk’s motion is tracked and recorded as is the intensity
of the transmitted light. The orientation of the disk is deter-
mined by placing it between a combination of polarizing op-
tical components so that the intensity of the transmitted light
can be related to the orientation of the optical axis. In or-
der to determine the expected optical intensity at the output
as a function of θ, the Jones matrix representation of the op-
tical elements is used to determine the exiting E-field from
which the intensity is calculated [105], [106]. For suitably
chosen optical components (see [95]), the intensity is propor-
tional to [1 − cos(2θ)]. From a histogram of the intensities, we
can, then, determine the preferred angular orientation of the
disk and, hence, the angular QED interaction energy and the
torque.

Fig. 15 shows the typical configuration for such experiments.
The thermal fluctuations of the particles are recorded via a CCD
camera attached to an upright microscope. The particles’ cen-
ters can be determined and tracked by the method of [104] with
a standard deviation of less than 1/10 pixel. Fig. 15 shows both
the tracking and intensity fluctuations recorded for a spheri-
cal non-birefringent particle. For non-birefringent particles, the
intensity fluctuations are due to scattering from imperfections
within the particle as it undergoes Brownian motion. In order
to study the QED torque, small birefringent disks should be
used. Such disks have been fabricated using a combination of
crystal ion slicing [107], mechanical polishing, and focused ion
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Fig. 16. LiNbO3 disks fabricated by crystal ion slicing and FIB sculpting.

beam (FIB) sculpting, as shown in Fig. 16. To date, no experi-
ments have been performed with birefringent particles; however,
this detection scheme should be suitable for such QED torque
experiments.

V. FUTURE DIRECTIONS

A number of other interesting QED phenomena await exper-
imental investigation.

A. Phase Transitions and the Casimir Effect

The Harvard group has initiated a study of the influence
of phase transitions on the Casimir force. The geometry is
that of the sphere and plate as discussed in previous sections.
The sphere is coated by thick gold while the plate consists
of materials such as Bi–Sr–Ca–Cu–O (BSSCO) that exhibit
high-temperature superconductivity. This material can be easily
cleaved, giving atomically flat surfaces, which will greatly re-
duce uncertainties due to surface roughness. The Casimir effect
will be measured below and above the transition temperature.
Recently, the influence of Casimir energy on the critical field of a
superconducting film has been theoretically investigated, and it
was shown that it might be possible to directly measure the vari-
ation of Casimir energy that accompanies the superconducting
transition [108].

B. Nonadditivity of Casimir Forces

Unlike many forces, the Casimir force is nonadditive in that
the force between two macroscopic bodies cannot be obtained
by pairwise summation of the interacting molecular interac-
tions [9]. That is, the retarded Casimir–Polder force [109] be-
tween two molecules is influenced by the presence of a third

molecule due to the electromagnetic nature of this interaction.
The effect of nonadditivity greatly complicates predictions of
the Casimir force for nonstandard geometries, such as corru-
gations, when perturbative methods are not applicable [110].
Experimental investigations of the nonadditive nature of the
Casimir force between surfaces comprising a variety of materi-
als and geometries is, therefore, of significant interest.

C. Casimir Friction

There has been an interesting prediction that dissipative re-
tarded van der Waals forces can arise between surfaces in rela-
tive motion due to the exchange of virtual photons that couple
to acoustic phonons in the material [111]. Similar dissipative
Casimir forces can arise between metals; here, virtual photons
would couple to particle–hole excitations in the metal [112].
This would lead to changes with position of the Q of suitable
MEMS oscillators, such as the ones described in Section II-A.

Pendry has considered another type of vacuum friction when
two perfectly smooth featureless surfaces at T = 0, defined only
by their respective dielectric functions, separated by a finite
distance, move parallel to each other [113]. He found large
frictional effects comparable to everyday frictional forces pro-
vided that the materials have resistivities of the order of 1 MΩ
and that the surfaces are in close proximity. The friction depends
solely on the reflection coefficients of the surfaces for electro-
magnetic waves, and its detailed behavior with shear velocity
and separation is controlled by the dispersion of the reflectivity
with frequency. There exists a potentially rich variety of vacuum
friction effects, as discussed in a recent article [114].

D. Dynamic Casimir Effect

It is also interesting to point out that the nonuniform rela-
tive acceleration of the metal and the sphere will lead, at least
in principle, in the Casimir oscillator of Section II-A to an
additional damping mechanism associated with the parametric
down-conversion of vibrational quanta into pairs of photons,
a QED effect associated with the nonlinear properties of vac-
uum. This phenomenon, which was investigated theoretically by
Lambrecht et al. in the context of a vibrating parallel plate ca-
pacitor [115], is an example of the so-called dynamical Casimir
effect, i.e., the nonthermal radiation emitted by uncharged metal
or dielectric bodies in a state of nonuniform acceleration [116].
The extraction of photons from vacuum in a cavity vibrating at
twice the fundamental frequency of the cavity can be viewed
as a parametric “vacuum squeezing” phenomenon. Physically,
photons are created as a result of the time-dependent bound-
ary conditions of cavity modes, which produce electromagnetic
fields. The observation of this effect would require a very high
cavity Q(∼ 108–109) typical of superconductive cavities and
gigahertz oscillations frequencies [115]. Such frequencies have
been achieved in NEMS [117].

It is worth pointing out that radiation can be extracted from
QED fluctuations also from a beam of neutral molecules in-
teracting with a grating. In this case, coherent radiation can
be generated as result of the time-dependent modulation of the
Casimir–Polder–van der Waals force between the molecules

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 07,2020 at 01:28:02 UTC from IEEE Xplore.  Restrictions apply. 



412 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 2, MARCH/APRIL 2007

and the grating. Radiation in the far infrared region should be
attainable with beam densities of 1017cm−3 [118].

VI. CONCLUSION

In conclusion, following a comprehensive state-of-the-art
overview of the Casimir effect from its original proposal, we
have discussed our recent and ongoing research in this promis-
ing field.
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