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Abstract. Semiconductor materials are well suited for power conversion when the incident pho-
ton energy is slightly larger than the bandgap energy of the semiconductor. However, for photons
with energy significantly greater than the bandgap energy, power conversion efficiencies are low.
Further, for photons with energy below the bandgap energy, the absence of absorption results in
no power generation. Here, we describe photon detection and power conversion of both high-
and low-energy photons using hot carrier effects. For the absorption of high-energy photons,
excited electrons and holes have excess kinetic energy that is typically lost through thermaliza-
tion processes between the carriers and the lattice. However, collection of hot carriers before
thermalization allows for reduced power loss. Devices utilizing plasmonic nanostructures or
simple three-layer stacks (transparent conductor–insulator–metal) can be used to generate
and collect these hot carriers. Alternatively, hot carrier collection from sub-bandgap photons
can be possible by forming a Schottky junction with an absorbing metal so that hot carriers
generated in the metal can be injected across the semiconductor–metal interface. Such structures
enable near-IR detection based on sub-bandgap photon absorption. Further, utilization and opti-
mization of localized surface plasmon resonances can increase optical absorption and hot carrier
generation (through plasmon decay). Combining these concepts, hot carrier generation and col-
lection can be exploited over a large range of incident wavelengths spanning the UV, visible,
and IR. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JPE.6
.042510]
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1 Introduction

The field of plasmonics, which involves the coupling of light and free electron charge densities,
has evolved rapidly over the past decade as a result of advances in nanofabrication techniques.
Metallic nanostructures have enabled high-electromagnetic field intensities near metal interfaces
and have led to a range of devices including modulators, lasers, amplifiers, detectors, sensors,
nanocircuit elements, and so on.1–15 Surface plasmon interactions can typically be divided into
two categories: localized surface plasmons and propagating surface plasmon polaritons. For both
cases, an incident electromagnetic wave couples to the free charges in the metal and creates a
coupled oscillation at the metal–dielectric interface. These oscillations are typically confined to a
small volume and lead to high field intensities. Larger metallic particles (∼100 nm) cause
enhanced scattering of the incident light while smaller particles (∼10 nm) lead to enhanced
absorption.16,17

Traditionally, plasmonic structures have been applied to photovoltaic (PV) devices to
increase the absorption within the semiconductor. However, the emerging field of hot carrier
plasmonics is fundamentally different because the light is absorbed within the metal to generate
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carriers; therefore, the devices are based on metallic absorption rather than semiconductor
absorption. Figure 1 shows the two basic structures that have been used to generate and collect
hot carriers in metals: (1) metal–insulator–metal (M–I–M) structures and (2) metal–semiconduc-
tor (M–S) Schottky junctions. In either case, light is incident on the structure and is predomi-
nantly absorbed in one metallic contact [the left contact in Fig. 1(a)], which is nanostructured to
excite surface plasmons. The absorption either leads to the direct generation of carriers with
excess kinetic energy, i.e., the so-called hot carriers, or to surface plasmons, which subsequently
decay into hot carriers. These carriers will diffuse, and a fraction of them will find their way to
the dielectric or semiconductor interface and will traverse it. For the M–I–M structure, a net
current will flow based on the absorption profile within each metal and on the voltage established
by the energy barrier for carriers to travel from one metal to the other. A similar effect is found for
M–S devices with a Schottky junction.

Hot carrier devices have several advantages over ones based on semiconductors alone.
Specific benefits include tunable absorption, higher energy transfer per incident photon due
to selective collection of high-energy carriers, generation of carriers from sub-bandgap photons,
and short thermalization times,18–21 which have been used to alter chemical processes,22–24 to
enable advanced energy conversion and photon detection,25–35 for nanoscopy,36 to modify ther-
mally induced processes,37–39 to induce structure phase transition,40 and so on.

2 Semiconductor-Free Hot Carrier Devices

Traditional photodetectors rely on semiconductor absorption to generate electron-hole pairs that
result in photocurrent; however, hot carrier devices that exploit metallic absorption do not need
to include a semiconductor. Thus, simple structures can be constructed out of metals and dielec-
trics to achieve hot carrier current upon photoexcitation.

To determine the expected photocurrent from semiconductor-free hot carrier plasmonic devi-
ces, we simulated the response of various M–I–M structures using the theory described in
Refs. 25 and 29. Figure 2 shows two devices: an M–I–M device based on a transparent con-
ducting electrode (indium tin oxide, ITO) and a grating-based M–I–M device. Both structures
result in preferential photon absorption on one side of the device. The M–I–M based on a trans-
parent conducting electrode benefits from ease of fabrication while maintaining large absorption
of short wavelengths, whereas the grating structure provides an absorption spectrum with tunable
resonances determined by the pitch, width, and height of the grating [Fig. 2(d)]. For a planar
ITO − Al2O3 − Au structure [Fig. 2(a)], nearly all the absorptions occur in the Au layer, making
it an excellent candidate for a hot carrier plasmonic device. Light incident on the device passes

(a) (b)

Fig. 1 Schematic diagrams showing the operational principle of hot carrier plasmonic devices.
(a) Absorption in the first layer of a metal–insulator–metal (M–I–M) device generates hot electrons
with kinetic energy great enough to traverse the insulating gap. (b) Illustration of a metal–semi-
conductor (M–S) hot carrier plasmonic device based on a Schottky interface.
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through the glass, ITO, and Al2O3 with negligible absorption (<1%). Upon striking the Au sur-
face, an appreciable amount of light is absorbed within the first 20 to 40 nm of the film (e.g.,
∼70% of the 460-nm light is absorbed within the first 30 nm). This satisfies two important cri-
teria for an M–I–M hot carrier device: preferential absorption in only one conductor and absorp-
tion near the conductor–insulator interface. The simulated transparent conducting electrode
device has a power conversion efficiency of ∼3% for 400-nm illumination and can reach
∼11% if the electron density of states is modified.25,32,41–43 Further details about this device
can be found in Ref. 25.

In order to achieve a large net photoresponse from an M–I–M hot carrier device, an asym-
metric absorption profile is necessary. Further, the absorption should occur near the metal–insu-
lator interface to aid in carrier traversal across the insulating barrier. In Fig. 2, the asymmetric
absorption profile was obtained through either the use of a transparent metal contact (ITO),
which absorbs negligible amounts of the incident light, or through the coupling to grating res-
onances, which yields higher fields and absorption in the grating compared with the thin Au film.

Many M–I–M geometries are possible, and we highlight three examples (Fig. 3). A planar
geometry is the simplest to fabricate; however, achieving strong absorption in only one layer near
the metal–insulator interface is difficult. Two routes have shown promise: (1) through the use of a
low absorption, transparent conducting layer as discussed above25 or (2) through prism coupling
to propagating surface plasmon modes.29 A second promising direction is the use of nanopar-
ticles or gratings.27 Depending upon the design, the nanostructures can be used to either absorb
the incident light or to scatter the light into the lower layer, where it is absorbed [Fig. 3(b)]. A
third option is the use of vertical nanostructures such as nanowires or nanotubes. Nanowire
arrays have proven advantages for PV applications because they enable a decoupling of the
absorption length and the carrier diffusion length, because light is absorbed in the vertical direc-
tion while carriers are collected horizontally. Similar advantages can be achieved for hot carrier
devices [Fig. 3(c)].

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2 Optoelectronic simulations of hot carrier plasmonic devices. (a) Absorption simulation for
an ITO − Al2O3 − Au planar structure. High absorption is shown only on the Au side of the Au −
Al2O3 interface. (b) The absorption difference between gold and ITO is large at short wavelengths.
(c) Photocurrent–voltage characteristic shows photodetector’s expected response and power gen-
eration (upper right quadrant of the current–voltage characteristic for this device). The applied
voltage is the relative voltage drop between the bottom electrode and top electrode (grounded).
(d) Absorption profile for a grating device coated with a thin layer of ITO on top as the top electrode.
The width and height of the grating are 500 and 50 nm, respectively, and the period is 600 nm.
(e) Preferential absorption occurs in the grating, leading to a large absorption difference and hence
the hot carriers flow from the grating to the thin film. (f) Photocurrent–voltage characteristic for the
structure showing power generation in the upper left quadrant. Note the photocurrent increases as
the applied voltage increases, which is different from (c). This is because the top layer is the main
absorber in this case.
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3 Sub-bandgap Photocurrent in Semiconductors

In addition to M–I–M structures, M–S devices composed of metal nanostructures on a semi-
conductor can also lead to hot carrier excitation in the metal and subsequent collection within
the semiconductor.31,44 Because the absorption is in the metal rather than the semiconductor, the
incident photons do not need to have energy greater than the semiconductor bandgap energy in
order to generate carriers. Thus, hot electron injection can enable sub-bandgap photodetection.

Figure 4 shows one such device: a near-IR detector made from Si and Au, with illumination
from the Si side. As the period is increased, the absorption (which occurs in the metal) is red-
shifted. As a result, the absorption peak can be tuned throughout the near IR where the Si is
nonabsorbing. The energetic carriers excited within the Au are injected into the Si and collected
by an ohmic contact. For photons with sufficiently low energy (λ > 2 μm), carrier injection can
be aided by the application of an applied external bias.

4 Hot Carrier Energy Converters

A large discrepancy exists between the maximum solar energy conversion efficiency predicted
by the Carnot limit (95%) and that of the best-reported nonconcentrating single-junction solar
cell (28.8%).45 This difference arises as a result of both extrinsic losses (e.g., series resistance,
parasitic recombination, contact shadowing, and so on) and intrinsic losses (e.g., fundamental
thermodynamic losses).46 Extrinsic loss accounts for less than 3% of the total loss in the record
GaAs single-junction solar cell; however, the intrinsic thermalization and sub-bandgap photon
loss account for ∼46% loss in efficiency.

(a) (b)

Fig. 4 Tunable hot carrier plasmon photodetector. (a) Schematic of a Si–Au-based device capable
of detecting sub-bandgap photons due to plasmonic excitation and hot carrier injection into the Si.
(b) Simulated absorption for the structure in (a) with an Au height of 15 nm and varied periodicity.
As the period is increased, the absorption peak is red-shifted toward the IR.

(a) (b) (c)

Fig. 3 Three simple geometries for light absorption and subsequent hot carrier collection:
(a) planar, (b) nanoparticle, and (c) three-dimensional nanowire or vertical nanostructure.
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The thermalization loss is the result of the energy mismatch between the energy of the inci-
dent photon and the energy of the collected electron-hole pair (see Fig. 5). A typical solar cell is
made from a semiconductor with a p − n junction (in addition to window layers), which is able
to absorb photons above the semiconductor bandgap energy. The absorption results in the gen-
eration of carriers, which can be collected. If the incident photon has energy in excess of the
bandgap energy, that energy is transferred to the excited carriers; however, the carriers will
quickly (on the timescale of pico- to nanoseconds) relax down to the semiconductor bandgap
through the emission of phonons, i.e., lattice vibrations. These phonons generally represent a
large loss mechanism. For example, if a 3.0-eV photon is incident on a 1.1-eV bandgap semi-
conductor, an energy loss of 1.9 eV is expected. Additionally, if the incident photon has energy
below the energy of the semiconductor bandgap, all the photon's energy will be lost due to its
inability to excite electron-hole pairs in the semiconductor.

In order to avoid these losses, a number of approaches have been attempted. The most suc-
cessful approach to date is the use of multiple semiconductors with different bandgaps.47–57 This
approach allows one to reduce the energy mismatch between the semiconductor bandgap and the
incident photon energy by sending photons within a specific energy band to a particular bandgap
material. Each material contains a p − n junction, which can be connected electrically to form a
multijunction device. This approach has resulted in a record solar cell with an efficiency of
46%,58 recovering an additional 17.2% of the total possible power when compared with the
record single-junction device. In order to achieve efficiencies greater than 50%, further material
developments are needed.50,52,59

There are other approaches to recovering the energy loss due to thermalization, such as multi-
carrier excitation60–67 and semiconductor-based hot carrier collection.68–76 Carrier multiplication
effects are similar to impact ionization effects in traditional semiconductors;77 however, these
effects are typically very small in bulk materials. In nanoscale semiconductor structures (e.g.,
quantum dots), quantum confinement effects can amplify this phenomenon to a measureable
amount. Collection of hot electrons from a semiconductor has proven difficult due to short ther-
malization times (approximately picoseconds); however, results of Kempa et al.73 suggest that
these effects are observable in ultrathin semiconductor film devices. As described in this manu-
script, hot carrier generation/collection in metals is a promising alternative to these concepts.

While efficiencies of >80% are the ultimate goal, plasmonic devices can be used in con-
junction with traditional PV devices to improve their efficiencies. Figure 6 shows a hybrid
hot carrier plasmonic device coupled to a traditional solar cell. Rather than capturing all the
light in the plasmonic structure, the metal in the M–I–M device is only used to capture
high-energy photons that are typically lost in a standard PV device (e.g., due to absorption
in the passivating window layer), and separately, the sub-bandgap photons are captured in
the M–S device. Figure 6 shows one example, but various tandem or spectrum splitting schemes

(a) (b)

Fig. 5 Thermalization loss mechanism. (a) Absorption of a high-energy photon results in energy
loss as the carrier relaxes down to the semiconductor bandgap. (b) Incident power flux from the
sun (red) compared with the generated power flux from GaAs (blue) and Si (green). Power is lost
from high-energy photons due to thermalization. Low-energy photons result in a loss due to their
inability to excite electron-hole pairs.
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can be used. Here, the spectrum is broken up into three spectral regions and the photons are sent
to the appropriate device.

5 Conclusions

Many opportunities exist for using hot carrier effects in metals to create new detectors and solar
energy harvesters. By taking advantage of concepts developed in plasmonics, devices can be
tuned throughout the UV, visible, and IR ranges using a combination of metals, semiconductors,
and insulators. Due to the short thermalization timescales associated with carrier cooling, ultra-
fast detectors and sensors can be enabled using these concepts.
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