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In atomic force microscopy (AFM), the angle relative to the vertical axis (hi) that the tip apex of a
cantilever moves is determined by the tilt of the probe holder and the geometries of the cantilever
beam and actuated eigenmode i. Even though the effects of hi on static and single-frequency AFM
are known (increased effective spring constant, sensitivity to sample anisotropy, etc.), the higher
eigenmodes used in multifrequency force microscopy lead to additional effects that have not been
fully explored. Here, we use Kelvin probe force microscopy (KPFM) to investigate how hi affects
not only the signal amplitude and phase but can also lead to behaviors such as destabilization of the
KPFM voltage feedback loop. We find that longer cantilever beams and modified sample orienta-
tions improve voltage feedback loop stability, even though variations to scanning parameters such
as shake amplitude and lift height do not. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4996720]

The development of specialized cantilever probes enabled
atomic force microscopy (AFM).1 Later, it was realized that
the holder tilts the cantilever and the trajectory of the tip apex
which both increases the effective static spring constant and
causes the phase of Amplitude Modulation (AM) AFM to be
sensitive to both the anisotropy and slope of samples.2–5 For
higher eigenmodes i, the angle between the tip apex trajectory
and the vertical axis (hi) also depends the geometries of the
cantilever and eigenmode, so that recent experiments were
able to use eigenmodes with different hi to probe forces in
several directions.6–11 Bimodal AFM, in which two eigenmo-
des are driven by excitation of the cantilever base, was used
for most of these experiments, but it is only one of many mul-
tifrequency techniques,12–25 and the effects of hi have not yet
been explored for the general multifrequency case.

Sideband multifrequency AFM methods are promising
ways to investigate optoelectronic materials and devices at
the nanoscale.18–25 In order to eliminate long-range artifacts
and improve spatial resolution, they drive a signal by mixing
a modulated tip-sample force with piezo-driven cantilever
oscillations. A prominent sideband method is photo-induced
force microscopy (PIFM), which has been used for nanoscale
imaging of Raman spectra,19 nanoparticle resonances,23 and
refractive index changes.25 However, there is considerable
debate about how to extract quantitative data from PIFM
scans24,25 because it is unclear how the force couples into
the probe and optical forces themselves are difficult to char-
acterize a priori.

Because the electrostatic force is well-characterized and
controllable compared to optical forces, it offers an opportu-
nity to test the sideband actuation technique. Frequency
Modulation (FM) and Heterodyne (H) Kelvin probe force
microscopy (KPFM) are sideband methods that use the elec-
trostatic force to drive cantilever oscillations, which are in
turn input into a feedback loop that measures the tip-sample
potential difference. In a recent experiment, height variation

of around 10 nm destabilized the H-KPFM voltage feedback
loop, but FM-KPFM scans were stable for variations of over
100 nm.26 Because FM- and H-KPFM are primarily distin-
guished by the eigenmode used to amplify the KPFM signal,
the cause of their qualitatively different behavior likely origi-
nates from the geometry of the eigenmodes. Moreover, the
details of cantilever dynamics have been shown to be critical
to understanding AM-KPFM,27,28 a much simpler technique
that drives and detects its signal at a single frequency, and
which can be used for comparison. In this letter, we use
KPFM measurements to answer the questions: (a) how does
the hi of each eigenmode affect the signals of KFPM, (b)
why does the KPFM feedback instability differ between H-
and FM-KPFM, and (c) how do the effects of hi appear in
sideband multifrequency force microscopy methods?

FIG. 1. The tip apex moves at an angle relative to the vertical axis for each
eigenmode i (hi), which depends on the angle of the probe holder (hholder),
the geometry of the cantilever, and the geometry of the eigenmode (Ui). The
inset shows the tip apex with the first eigenmode excited (i¼ 1), in which
the amplitude of the eigenmode (Y1), the tip apex displacement (~r1), and h1

are labeled.
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The motion of a cantilever beam can be expressed as a
sum of eigenmodes, each a solution to the Euler-Bernoulli
beam equation29,30

zcantðx; tÞ ¼
X1

i¼1

YiðtÞUiðxÞ; (1)

where YiðtÞ contains the time-dependence, Ui is the shape of
the ith cantilever beam eigenmode (normalized so that
UiðLÞ ¼ 1, where L is the length of the cantilever beam), and
zcant is the displacement of the cantilever beam (see Fig. 1).
To maintain generality, the exact form of Ui is not specified
until the numerical evaluation of hi, at which point the solu-
tion for a rectangular cantilever beam is used.29,30 Thus, the
following analysis holds even for non-rectangular cantilever
beams and probes with large tip cones, both which may have
atypical Ui.

31,32

To calculate the trajectory of the tip apex, the probe is
characterized by its tip cone height h, contact angle d, and
contact position xt (Fig. 2). The position of the tip apex is the
location of base of the tip cone {xt; YiUiðxtÞ} plus the posi-
tion of the tip apex relative to the base of the tip cone
{h cos ðnðYiÞ $ dÞ; h sin ðnðYiÞ $ dÞ}, where nðYiÞ ¼ tan$1

ðYi@xUiðxtÞÞ is the angle of the vector normal to the cantile-
ver at xt. Because the probe is held at an angle hholder (here,
0.2 rad), the displacement of the tip apex from equilibrium
becomes in the small oscillation limit (Yi % L)

~ri ¼ R
hðcos ðnðYiÞ $ dÞ $ cos ðdÞÞ

YiUiðxtÞ þ hðsin ðnðYiÞ $ dÞ þ sin ðdÞÞ

! "
; (2)

where R ¼
h

cos ðhholderÞ sin ðhholderÞ
$sin ðhholderÞ cos ðhholderÞ

i
is a 2D rotation

matrix around the base of the cantilever beam. For a single
eigenmode in the Yi % L limit, the tip apex moves in a
straight line at an angle with respect to the vertical axis

hi ¼ lim
Yi=L!0

cos$1ð~ri ' ðYiẑÞÞ: (3)

Note that Eqs. (2) and (3) imply that much of the trajectory
of the tip apex is in the x̂ direction, even for very small exci-
tations. For example, a 10 nm amplitude excitation of the
first eigenmode of the cantilever beam in Fig. 2(b) causes the
tip apex to move (3:9 nm in the x̂ direction and 8.6 nm in
the ẑ direction. Because the potential energy of an eigen-
mode must be the same whether the motion of the end of
cantilever beam (UiðLÞ) or the tip apex (~ri) is considered, an
effective spring constant (keff

i ) for forces acting on the tip
apex parallel to~ri (perpendicular forces excite only eigenm-
odes 6¼ i) can be defined8

keff
i ¼ lim

Yi=L!0

Y2
i

j~ri Yið Þj2
ki; (4)

where ki is the spring constant for an upward force acting at
x¼L.33

The tip apex trajectory affects AFM techniques that use
a modulated tip-sample force ~Fdir to actuate the cantilever
either directly or through sideband coupling while relying on
piezo-driven oscillation with amplitude AT at frequency xT

for topography control (here, xT ¼ x1 in Table I is used).
Sideband techniques generate a signal by modulating a
separation-dependent force ~Fdir at frequency xM, which is
then mixed with the piezo-driven oscillations, typically AT.
Here, the resonance frequency used for detection determines
the modulation frequency xM ¼ xi $ xT (Table I). By using
the force gradient, sideband methods exclude the non-local
effects of the cantilever beam which are present when ~Fdir is
used for direct actuation, such as in AM-KPFM.18,20,24

To confirm that the cantilever beam’s contribution to the
total force is small even when higher eigenmodes are used,
the force on the beam is computed for both direct actuation
($@U=@Yi) and sideband actuation ($@2U=@Y2

i ), where U is
the electrostatic potential energy between the probe and the
surface evaluated using the proximity force approximation
and the geometry of the longer probe. The contribution from
the tip apex is calculated by modeling it as a 30 nm radius
sphere 10 nm above the surface. The percent of the signal
originating from the cantilever beam using direct actuation is
found to be 17%–53% for the first seven eigenmodes, while
with sideband actuation 0.1%–0.2% of the signal originates
from the beam. The small contribution from the beam vali-
dates the approximation that the electrostatic force acts on
the tip apex for sideband actuation of higher eigenmodes.

In the small-oscillation approximation,22,24 the force
driving sideband oscillation is ~Fside cos ðxDtÞ, where

~Fside ¼ @d
~Fdir

AT

2
cos hi $ hnð Þ; (5)

in which d is the tip-sample separation, xD is the detection
frequency, and the cos ðhi $ hnÞ factor originates from the

FIG. 2. Cantilever geometry determines the direction of the tip apex motion.
(a) and (b) SEM images show cantilevers of lengths 350 lm and 90 lm,
respectively (lmasch, CSC37/Pt-B, and NSC35/Pt-B). (c) Each cantilever is
characterized by its tip cone height h, contact position xt, contact angle d,
and length L. (d) and (e) The full calculation of ~r i [solid line, Eq. (2)] and
linear approximation [dashed line, Eq.(3)] show agreement. For each eigen-
mode, hi is greater for the short cantilever than for the long cantilever. (f)
The slope of the sample is characterized by its normal vector (n̂) and the
angle it makes with the vertical axis (hn).

TABLE I. Cantilever resonance frequencies.

L (lm)
x1

2p
(MHz)

x2

2p
x3

2p
x4

2p
x5

2p
x6

2p
x7

2p

90 0.25 1.62 4.58 … … … …

350 0.02 0.13 0.37 0.72 1.20 1.79 2.50
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angle between the trajectory of the tip apex and the force
vector (parallel to n̂). The displacement of the tip apex at xD

is then ~rjðtÞ ¼ AD cos ðxDtÞr̂ j, where eigenmode j is driven
and the signal detected by the lock-in amplifier is

AD ¼
Qj

keff
j

~F ' r̂ j; (6)

for both the sideband and direct driving forces (Fig. 3). A
change in the sign of AD corresponds to a phase shift by p
radians.

The interplay of hj and sample slope can then be
observed in the signal AD normalized by the its value on a
flat surface ( ~AD ) AD

ADðhn¼0Þ)

~A
dir

D ¼
cos hj $ hn
# $

cos hj
# $ ; (7)

~A
side

D ¼
cos hn $ hj
# $

cos hn $ hið Þ
cos hj
# $

cos hið Þ
; (8)

where it is assumed that n̂ is in the x-z plane and hi; hj

6¼ 6p=2. Note that if jhi $ hnj > p
2 > hi; ~AD changes sign.

Equations (7) and (8) predict how the geometry of tip
apex motion causes scanning probe methods to be sensitive
to sample slope. To test the equations, a silicon trench is fab-
ricated using e-beam lithography to pattern a 2 lm* 100 lm
line on a silicon wafer which is then etched using reactive
ion etching (RIE) and coated with 5 nm of chromium for
conductivity. The edges of the trench are imaged, in the
attractive mode34 (Cypher, Asylum Research), trace and
retrace images are averaged, and each column of pixels is
summed and averaged [Figs. 4(a) and 4(b)].

In the static limit, when an AC voltage is applied to a
probe at frequency xA, the tip-sample electrostatic force has
components at three frequencies:12,18 ~Fes ¼ ~FDC þ ~Fx cos
ðxAtÞ þ ~F2x cosð2xAtÞ: Either ~Fx or ~F2x can be used in Eq.
(5) to drive the sideband signal by choosing xM ¼ xA or 2xA,
respectively. The signal then depends on the gradient of the
original modulation force.18,20,35 For FM-KPFM, xA % x1.18

Closed loop KPFM measures the contact potential difference
between the probe and sample using a feedback loop to nullify
a signal driven by the force ~Fx. Alternatively, open loop
KPFM uses oscillation driven by ~F2x combined with the ~Fx

signal to estimate the potential difference DV from the rela-
tionship between the forces ~F2x ¼ ~FxVAC=ð4DVÞ.36,37 The
relationship between ~F2x [which drives A2x according to Eq.
(6)] and KPFM feedback loop itself can be seen in Fig. 4(c):
the feedback becomes unstable at locations where A2x changes
sign. Moreover, any change in A2x makes KPFM susceptible
to topographic cross-talk.38 The signal is driven by ~F2x

because it reveals the behavior of the KPFM feedback loop,
without requiring feedback to be used and is not susceptible to
patch potentials or tip change.

FIG. 3. An AC voltage, VAC, is applied to the cantilever at frequency xA,
while tip-sample separation is controlled by piezo-driven oscillation at fre-
quency xT and the sample is grounded. The oscillations at xT mix with the
electrostatic force driven by VAC at frequency xA to drive the tip apex at the
detection frequency, xD, which is amplified by one of the cantilever’s reso-
nance frequencies and detected by a lock-in amplifier. When KPFM feed-
back is used, the grey signal paths are added to the circuit, and
xA ¼ ðxD $ xTÞ=2 is changed to xA ¼ xD $ xT .

FIG. 4. (a) and (b) The height of a trench that is scanned with KPFM (1282 pixels, 500 nm/s). (c) Where the normalized signal ( ~A2x, red) becomes negative,
the KPFM voltage with feedback on (blue) becomes unstable and approaches the limit imposed on the feedback loop, for both trace (solid) and retrace
(dashed). Long (d) and short (e)–(g) cantilever beams scan across the trench edge in three different orientations: down [(i), hn < 0], parallel to (ii), and up the
slope [(iii), hn > 0]. In (i) and (ii), ~A2x remains positive for all methods, but in (iii) all methods except FM-KPFM contain a negative portion for the short can-
tilever beam. (f) and (g) Varying scan parameters such as AT (used for topography control) and lift height are not sufficient to prevent ~A2x < 0. The different
scanning modes are labeled by a prefix (e.g., “H” for H-KPFM) and a number indicating the eigenmode used to amplify the signal, except for FM-KPFM,
which always uses the first eigenmode. (h) An artifact is present in an H-KFPM scan of Au nanoparticles on indium tin oxide when the signal is amplified by
the second eigenmode of the short cantilever beam. (i) When the long cantilever beam is used to scan other Au nanoparticles on the same sample, the artifact
is eliminated.
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The effect of the slope is revealed by observing how the
normalized signal ( ~A2x) changes as the tip apex approaches
an edge of the trench at different orientations, for AM-, FM-,
and H-KPFM with the first three eigenmodes of each cantile-
ver, and VAC¼ 3 V. In Fig. 4, the trench edge is crossed with
three different orientations: (i) the vector from the base of
the cantilever beam to its tip apex points down the slope
(hn > 0, from the higher to the lower level), (ii) parallel to
the slope (n̂ out of plane), and (iii) up the slope (hn < 0).
One trend predicted by Eq. (8) is observed: ~A2x tends to
increase as hn increases. However, the decrease of ~A2x is
greater for the short cantilever beam than for the long canti-
lever beam. For the short cantilever beam, the hn < 0 edge
leads to ~A2x < 0 for every technique except FM-KPFM.

Other scan parameters affect ~A2x much less. AT, used
for topography control, is varied from 10 to 40 nm, but the
shape of ~A2x retains a negative portion as the hn < 0 edge is
crossed. Similarly, using a two-pass method and varying the
lift height from 2 nm to 16 nm does not prevent ~A2x < 0 at
the hn < 0 edge. Thus, if KPFM feedback is unstable for
geometric reasons, adjustments to the scan settings do not
typically stabilize it.

To test the predictions with a wider range of hi, the
trenches are scanned again with the long probe in the H-
KPFM mode using the first eigenmode for topography control
and amplifying the ~F2x signal with eigenmodes 2–7 (i.e.,
xA ¼ xM=2 ¼ ðxi $ x1Þ=2, so that xD ¼ xi for 2 + i + 7,
Table I). Because each eigenmode has a slightly greater hi

than the one before it (i.e., hiþ1 > hi), Eq. (8) predicts that the
effect of the sample slope is greater for the higher eigenmodes
than the lower ones, and the experiment confirms this trend,
although the seventh eigenmode changes less than the sixth
[Figs. 5(b)–5(d)]. The experimental data do not all fall on a
single line [Fig. 5(c)], perhaps because the region on the sam-
ple from which the ~F2x force originates deviates from the
single-slope assumption. For eigenmodes 3–7, the data agree
better with Eq. (8), which has no free parameters, than with
the null hypothesis that the signal does not depend on slope,
thus confirming that the direction of the force affects how it
drives the tip apex. However, Eq. (8) tends to underestimate
~A2x, particularly for slopes <$0:5, which suggests that other
factors, such as the tip cone and changes to the piezo-driven
oscillation, AT, may also matter. An initial test of effect of the
slope on piezo-driven oscillation with bimodal AFM shows a
change in the phase at the edges of the trench [Figs. 5(e) and
5(f)]. Because the sideband excitation technique is similar for
different forces, the results here indicate that hi affects the
whole class of methods.

The direction of the tip apex trajectory depends on cantile-
ver geometry and the eigenmodes used and influences side-
band multifrequency force microscopy methods. It can even
change the sign of the signal, which leads to feedback instabil-
ity in KPFM. The results here show that considerable topo-
graphic restrictions exist for multifrequency methods when
short cantilevers are used. Because short cantilevers enable
faster scanning than long cantilevers,39 the restriction amounts
to a speed limitation for any given roughness. Because the
equations above separate the calculation of hi (1)–(4) from the
analysis of the sideband signal (5)–(8), either portion can be
combined with numerical methods to account for non-

rectangular cantilever beams or non-analytic forces.
Knowledge of the effect of geometry will assist in the develop-
ment of additional multifrequency methods and will make the
interpretation of current methods more accurate. In particular,
the improved stability of KPFM will enable high resolution
voltage mapping of rough or textured surfaces, which will
allow for improved nanoscale characterization of optoelec-
tronic structures such as solar cells and for the study of light
induced charging effects resulting from hot carrier generation
or plasmoelectric excitation of nanostructured metals.23,26,40
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