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Enhanced repulsive Casimir forces between gold and thin magnetodielectric plates
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We calculate repulsive Casimir forces between metallic and magnetic plates and quantitatively probe the
magnetic plate’s properties as tuning knobs for the repulsion, namely, the plate’s thickness and its low-frequency
permittivity and permeability. For a thin magnetic plate (� 10 nm), we find that repulsion can exist as long as
μ(0) � ε(0). We also explore the effect of temperature on the repulsion and transition distance between attractive
and repulsive interactions. We show how the parameters can be tuned to allow repulsion in submicron separation
regimes, making it potentially accessible to known high-resolution measurement techniques using magnetic van
der Waals materials.
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I. INTRODUCTION

In 1948, Casimir theorized that two perfect conducting
plates positioned parallel to each other in a vacuum would ex-
perience an attractive force arising from the zero-point energy
of the vacuum [1], since referred to as the “Casimir force.”
Lifshitz generalized this work to account for the material’s
real optical response and thermal fluctuations present at finite
temperatures [2]. Dzyaloshinskii, Lifshitz, and Pitaevskii later
considered a fluid-filled gap rather than vacuum, discover-
ing the first possibility of switching the interaction between
the plates from attraction to repulsion [3]. Repulsion in flu-
idic systems was later demonstrated in an experiment by
Munday et al. [4].

Experimentally generating a repulsive Casimir force be-
tween two plates separated by less than 1 µm in vacuum has
eluded the community to date. There have been a few theo-
retical approaches to potentially overcoming this limitation,
which include leveraging nonequilibrium states [5–9], exotic
geometries and materials [10–13], and magnetic properties
[14–24]. This article focuses on the conditions under which
magnetic materials may be used to create repulsive forces
and the extent to which currently available materials could
be used.

Boyer derived the force between a perfect conducting plate
and an infinitely permeable plate [25], which resulted in a
purely repulsive force with a magnitude slightly below that
which Casimir calculated for the attractive case. Since then,
the following question has arisen: How ideal must the materi-
als be to produce repulsion? In real systems, the interaction is
not purely repulsive, but rather, it can be attractive at some
separations and repulsive at others [16,17,23]. This aspect
factors into material choices because more ideal materials,
especially magnetic materials, can push the repulsive behav-
ior to shorter separations. Initial generalizations investigated
nondispersive media [14]. Although informative for the first

*jnmunday@ucdavis.edu; https://mundaylab.com

steps of real-material implementation, it was noted that dis-
persion must be included moving forward [26].

With dispersion accounted for, the repulsive component
has been shown to be sensitively dependent on the frequency
regime over which the magnetodielectric plate’s response is
mainly magnetic. Further inspection of force behavior, when
accounting for frequency dependence [16], showed results
similar to those for the nondispersive case, although the re-
pulsion generally occurs at a separation several orders of
magnitude below the length scale corresponding to the wave-
length of the magnetic resonance frequency. This result first
signaled that for repulsion at submicron separations, the mag-
netic resonance may not necessarily need to occur at visible
frequencies.

Despite the results of Ref. [16], in many other systems, the
Casimir force at short separations is dictated by the visible-
frequency response of the interacting materials. With this in
mind, metamaterials have been proposed as a way of produc-
ing an artificial magnetic response [15–19]. This property is
useful because naturally occurring materials do not have a
magnetic response at visible frequencies [26].

Reference [17] probed the connection between the repul-
sive behavior and the properties of a magnetic metamaterial
and found that even a small Drude background in the per-
mittivity of the magnetic metamaterial causes the repulsive
component to turn attractive in the micron separation regime
but that repulsion can be enhanced by increasing the mag-
netic anisotropy of the metamaterial. They also found that
the magnetic response in the visible regime is not necessarily
required to produce a Casimir repulsion at submicron separa-
tions, confirming the results in Ref. [16]. However, the authors
eventually concluded that measured repulsion (in the relevant
d = 0.1−1 µm separation regime) using magnetic metamate-
rials would be very challenging [18].

Revisiting naturally occurring materials, it has been
shown that Casimir repulsion is still theoretically possible
in metallic-magnetodielectric systems if the magnetic plate
has a significantly strong response and the metallic plate’s
permittivity at vanishing frequency is described by the
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dissipationless plasma model [20,23]. The latter requirement
can be understood when considering that the zero-frequency
transverse electric mode provides the sole repulsive
contribution to the pressure. In contrast, a dissipative Drude
model predicts a vanishing pressure contribution for the
transverse electric mode at zero frequency, leaving a purely
attractive interaction. While it is an experimental fact that
the conductivity of metals such as gold remains finite at low
frequencies, which is in agreement with the Drude model,
several Casimir experiments are well described by the plasma
model, excluding the Drude model with high confidence
[27,28]. These results suggest that it is likely that a more
complex model, rather than a simple Drude or plasma model,
is actually needed to describe the dielectric response of
metals for real materials. Thus, metallic-magnetodielectric
material systems provide an excellent platform to further
experimentally distinguish between the two models as the
sign of the Casimir force depends crucially on the modeling
as described above. It should be noted that repulsion has also
been shown to be present when the metallic plate is replaced
with a superconducting material whose permittivity can be
described with Lorentz oscillators; however, this effect is
caused by its diamagnetic properties, which is a separate, but
interesting, system in its own right [29].

For a finite-thickness magnetodielectric plate, its thickness
b and permittivity ε(ω) and permeability µ(ω) at zero fre-
quency have all been shown to affect the Casimir repulsion
[20–23]. The system temperature T has also been shown to
enhance repulsion in metamaterial systems through the zero-
frequency transverse electric mode [18].

Here, we systematically investigate to what extent each
of the preceding parameters can be tuned to enhance the
repulsive behavior in a metallic-magnetodielectric system
using the largest-magnitude repulsion Pmax and separation
where the interaction switches from attraction to repulsion
dT as quantitative metrics. This investigation is carried out
with the overarching goal of identifying combinations of
parameter values that theoretically push this system into
an experimentally accessible regime and subsequently al-
low for the first measurement of a Casimir repulsion in
vacuum at submicron separations. Although Casimir-force
calculations using ultrathin yttrium iron garnet (YIG) as the
magnetodielectric material have shown repulsion in the sub-
micron separation regime [21,23], it is unclear whether the
bulk properties of YIG will hold when thinning the mate-
rial down to just a few nanometers. We therefore reevaluate
the parameter space and use our calculations to identify
a potential class of alternative materials that could enable
repulsion.

We compare our calculations with the force-modulated
gradient measurement technique, which is generally per-
formed using an atomic force microscope [30–32]. The
theoretical limits to the minimum force and maximum sep-
arations over which this technique can work were identified
in Ref. [32]. We also consider only Au as the material for the
metallic plate, as it is the most common surface used in these
measurements and other noble metals generally give similar
results.

In addition to the quantitative tuning of already-established
connections between the stated system parameters and
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FIG. 1. Parallel-plate configuration. The left plate is semi-
infinitely thick Au; the right plate is an arbitrary magnetic material.
The material permittivities ε and permeabilities μ along with the
plate-plate separation d and magnetic-plate thickness b are noted.

repulsive behavior, we show a nontrivial interplay between
the plate thickness and μ(0), as well as linearization of the
relationship between μ(0) and ε(0) required to generate
repulsion [μ(0) � ε(0)], previously seen to be nonlinear for
infinitely thick plates [20].

The content of this article is partitioned into the following
sections: In Sec. II, a generic Au-magnetodielectric system,
the underlying theory, and key features in the force behavior
are discussed. In Sec. III, we probe the effect of the non-
ideality of the magnetodielectric material. In Sec. IV, we
look at what relative permeability and thickness regimes are
most optimal for repulsion. In Sec. V, the system temper-
ature is considered as an additional tuning knob. Last, in
Sec. VI, we draw conclusions as to what combination of
parameter values appears to be optimal for the largest repul-
sion to occur at the smallest separation and identify a class
of materials that are excellent candidates for meeting these
goals.

II. THEORY AND APPLICATION

We consider a cavity in vacuum formed between a semi-
infinite Au plate and a magnetodielectric plate of thickness b,
positioned parallel to each other and separated by a distance d
(Fig. 1).

A. Lifshitz formalism

Within Lifshitz’s theoretical framework [2,3], the pressure
between the plates can be separated into contributions from
the transverse electric (TE) and transverse magnetic (TM)
modes described by the following equation:

P = PTE + PTM, (1)
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where the components of Eq. (1) take the form

Pj = −kBT

π

∞∑
n=0

′
∫ ∞

0
k dk

rL
j rR,eff

j e−2ρmd

1 − rL
j rR,eff

j e−2ρmd
ρm (2)

and kB is the Boltzmann constant, T is the system temperature,
k is the magnitude of the wave-vector projection onto the sur-
face of the plate(s), and rL

j and rR,eff
j are the Fresnel reflection

coefficients for polarization j at the left (L; Au), and right (R;
magnetic material) plate surfaces, respectively.

Taking the finite thickness b of the magnetic plate into
account, its effective reflection coefficient is [33]

rR,eff
j = rR

j (1 − e−2ρR b)

1 − (
rR

j

)2
e−2ρR b

. (3)

The Fresnel reflection coefficients for half-spaces have the
following forms:

ri
TM = ρmεi − ρi

ρmεi + ρi
, ri

TE = ρmμi − ρi

ρmμi + ρi
, (4)

where εi and μi are the relative permittivity and permeability
of media i (L: Au, m: vacuum, and R: magnetic material),
respectively. ρi is the magnitude of the imaginary component
of the wave vector projected onto the z axis (normal to the
plate surfaces) in media i and has the form

ρi =
√

k2 + εiμiξ 2
n

c2
, (5)

where c is the speed of light in vacuum. The summation
in Eq. (2) is taken over the Matsubara frequencies ξn =
2πnkBT/h̄, where h̄ is the reduced Planck’s constant and
the prime denotes that the zero-frequency term (n = 0) is
multiplied by an additional factor of 1/2.

We describe the relative permittivity of the Au plate by the
plasma model in the imaginary frequency domain as

εAu(iξ ) = 1 + ω2
p

ξ 2
, (6)

using the plasma frequency ωp = 9.0 eV, as in Refs. [34,35].
Au is nonmagnetic, so the permeability of the Au plate is set
to μAu(iξ ) = 1.

While we will concentrate on the effect of the magnetic
material’s permeability, its permittivity cannot be ignored (or
simply set to 1) for a realistic material. We have chosen to
model the permittivity of the magnetic material after that of
bulk YIG. The experimental data for the YIG permittivity
along with the upper and lower frequency extrapolations in
Ref. [23] are used with Kramers-Kronig relation (7) to calcu-
late ε(iξ ) for YIG as

ε(iξ ) = 1 + 2

π

∫ ∞

0

ω Im[ε(ω)]

ω2 + ξ 2
dω. (7)

As seen in Fig. 2, the permittivities of Au and YIG are infinite
and finite, respectively, at iξ = 0, as expected from a metal
and a dielectric. This choice is reasonable but constrains the
scope to magnetic materials with a dielectric character (i.e.,
materials with a finite permittivity at ξ = 0), which is neces-
sary for a more thorough investigation of the other magnetic
material parameters.
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FIG. 2. Permittivities for Au and YIG evaluated at imaginary
frequencies iξ .

Unlike the permittivity, for which some materials could
be described with a Drude or plasma background and/or
resonances in the visible-frequency regime, the permeability
of naturally occurring ferromagnetic materials typically has a
response up to only the few-gigahertz frequency regime [36].
It is therefore reasonable for system temperatures near 300 K
to treat the magnetic response as quasistatic μ(iξ = 0) > 1
and otherwise μ(iξ > 0) = 1. For a more in-depth discussion
on this treatment, see Ref. [20]. For most of the work pre-
sented here, the value of μ(iξ = 0) will be left arbitrary rather
than pinned at the value for YIG [μ(0) = 160], allowing us to
explore its dependence on the force.

Special care must be taken for the pressure expressions at
iξ = 0 because divergences and indeterminate values emerge
in Eq. (2) during numerical evaluation. In the limit of iξ → 0,
Eqs. (2) and (3) can be rewritten such that ρm and ρR are both
replaced with k and the Fresnel reflection coefficients (4) for
the left-plate surface take the forms

rL
TE,0 =

k −
√

k2 + ω2
p/c2

k +
√

k2 + ω2
p/c2

, rL
TM,0 = 1 (8)

and those for the right-plate surface take the forms

rR
TE,0 = μ(0) − 1

μ(0) + 1
, rR

TM,0 = ε(0) − 1

ε(0) + 1
. (9)

B. Typical pressure characteristics

One of the general requirements for generating a repulsive
Casimir force in metallic-magnetodielectric systems is that
the permittivity of the metallic plate be described by a plasma
model at zero frequency. We therefore use Au for the metallic
plate because it is a good, nonmagnetic metal and is common
in experiments [31,32].

For the purposes of identifying typical features in the force
behavior, we consider a cavity in vacuum formed by a semi-
infinite Au plate and a 1-µm-thick YIG plate [μYIG(0) = 160
[37] and εYIG(0) = 4.02] at T = 300 K. The pressure curve
and the separated contributions from the TE and TM modes
corresponding to ξ = 0 and ξ > 0 normalized by the pressure
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FIG. 3. (a) Magnitude of the pressure between a semi-infinite Au
plate and a 1-µm-thick YIG plate with the transition separation dT

and maximum repulsion Pmax features identified. (b) The correspond-
ing mode contributions from the zero-frequency TE and TM modes
(TEξ=0 and TMξ=0, respectively) and nonzero-frequency TE and TM
modes (TEξ>0 and TMξ>0, respectively) normalized by Pc.

of a perfect conducting cavity in vacuum Pc = −h̄cπ2/240d4

can be seen in Fig. 3.
Figure 3(a) shows the magnitude of the Casimir pressure

experienced by the plates as a function of separation. There
are two important features here: the vanishing pressure at d ≈
2.26 µm denoting the switch from attraction to repulsion and
the largest-magnitude repulsion occurring at d ≈ 2.96 µm. We
define the separation where this force switching occurs as the
transition separation dT and the largest-magnitude repulsion
as Pmax. These two parameters will be used as metrics for the
repulsive behavior in the sections below.

Figure 3(b) shows the contributions to the pressure from
the TE and TM modes at zero frequency (TEξ=0 and TMξ=0,
respectively) and the TE and TM modes for all nonzero fre-
quencies (TEξ>0 and TMξ>0, respectively), all normalized by
Pc. The modes at nonzero frequencies control the interaction
at small separations, and those at zero frequency control the
interaction at large separations. Interestingly, we note that for
these metallic-magnetodielectric systems, the TEξ=0 mode is
repulsive.

III. RELAXED IDEALITY CONDITION
FOR MAGNETIC MATERIAL

The initial cavity considered by Boyer consisted of ideal
electric and magnetic plates [25]. In real materials, the permit-
tivities and permeabilities are not infinite for all frequencies,
nor are the two properties mutually exclusive. Some magnetic
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FIG. 4. (a) Relations between the zero-frequency dielectric and
magnetic responses of the magnetic material required to maintain
dT = 6 µm, calculated for varying thicknesses b. Above each line
are parameter values that result in repulsion; below are those that
result in attraction at dT = 6 µm. (b) Calculations repeated with a
single thickness, b = 1 nm, for varying transition separations dT. The
dashed lines correspond to Eq. (17).

materials like Ni and Fe are also electrically conductive, such
that repulsion in such systems may not be present. The fol-
lowing question then arises: Is there some upper limit on how
electrically conductive the magnetic plate can be in order to
maintain repulsion?

To answer this question, for a given value of ε(0), we
calculate the value of μ(0) necessary to keep dT pinned at
6 µm [Fig. 4(a)]. Because the zero-frequency modes dominate
the interaction at separations greater than a few microns, this
methods allows us to determine the necessary restrictions on
the material properties for repulsion in this surface separation
regime.

Previous calculations for two infinitely thick plates showed
vertically asymptotic behavior at ε(0) ≈ 8, putting a rela-
tively short ceiling on how conductive the magnetic material
could be [20]. However, the situation changes as the mag-
netic material’s thickness is reduced to a few nanometers.
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This asymptotic condition relaxes to a linear relation as
the thickness is reduced from 10 µm to 1 nm [Fig. 4(a)].
Calculations done at 10 and 1 nm have a slope of ≈ 1 in
the ε(0)-μ(0) plane, suggesting that the condition for re-
pulsion becomes μ(0) ≡ ε(0) for very thin films and large
separations.

This simple linear relation could be used as a rule of thumb
for generating repulsive Casimir forces at large separations,
similar to the inequality between the dielectric functions in
fluidic systems [4]. As high-resolution experiments are car-
ried out in the submicron separation regime, we repeat the
calculations for b = 1 nm with dT = 1 µm, 800 nm, 600 nm,
and 400 nm. As shown in Fig. 4(b), the linearity persists, yet
the slope increases with decreasing dT. There is also a constant
positive shift in μ(0) as the repulsive, zero-frequency TE
mode has to compensate for the attractive, nonzero-frequency
modes that become dominant in the submicron separation
regime.

To understand the behavior of the numerical curves in
Fig. 4(b), we apply several approximations to Lifshitz’s for-
mula (1) to obtain an analytical expression for ε(0) in terms
of μ(0) which is in agreement with the calculations. For each
curve, the total pressure contribution for all nonzero Matsub-
ara frequencies is constant. In the following, we thus apply
approximations to only the zero-frequency pressure contri-
bution and keep the contribution of the nonzero Matsubara
frequencies exact.

Notice that while the magnetic slab for the data in Fig. 4(b)
is very thin (b = 1 nm), the values of the permittivity ε(0) and
permeability μ(0) are quite high. Thus, there is competition
between physical thickness b and optical thickness for the
effective reflection coefficient on the thin magnetic film. The
optical thickness is related to the reflection coefficients of the
corresponding half slab rR

j,0. It is high if |rR
j,0| ≈ 1 and low if

rR
j ≈ 0.

The competition between physical and optical thicknesses
becomes evident when examining the limiting behaviors of
small physical thickness and large optical thickness sepa-
rately. On the one hand, keeping rR

j,0 fixed and expanding

Eq. (3) for small b, we obtain rR,eff
j,0 ≈ 2kb rR

j,0/[1 − (rR
j,0)2].

On the other hand, if we keep b fixed and expand Eq. (3)
around rR

j,0 = ±1, where the upper sign corresponds to j =
TM and the lower one corresponds to j = TE, we find rR,eff

j,0 =
±1. What happens if the physical thickness is small and the
optical thickness is large at the same time, as is the case for
the data in Fig. 4(b)? The competition between physical and
optical thicknesses can be captured by introducing an effective
thickness of the slab by

b j,eff = 2b
rR

j,0

1 − (
rR

j,0

)2 . (10)

Notice that for transparent slabs [ε(0), μ(0) = 1] the effective
thickness becomes zero, as it should. For ε(0), μ(0) � 1, the
effective thickness becomes bTM,eff ≈ bε(0)/2 and bTE,eff ≈
bμ(0)/2 for the two polarizations, respectively. We will make
use of this approximation for our final result in Eq. (17).

If we now keep bj,eff fixed and expand Eq. (3) around
|rR

j,0| = 1 [which is valid for the large values of μ(0) and ε(0)

considered here], we obtain, to leading order,

rR,eff
j,0 ≈ kb j,eff

kb j,eff + 1
. (11)

Indeed, this expression agrees with the limiting behaviors for
small physical thickness and large optical thickness discussed
above.

As a next step, we approximate the reflection coefficients
on the left plate for TE polarization given in (8). As gold has a
relatively high plasma frequency, we can expand the reflection
coefficient for ωp/c � k and find

rL
TE,0 ≈ −1 + 2

ck

ωp
− 2

c2k2

ω2
p

+ O

(
c3k3

ω3
p

)
. (12)

The expansion up to second order in ck/ωp will be accurate
for the separations considered here.

With approximations (11) and (12) we can now find an ap-
proximation for the pressure contributions at zero frequency.
Introducing the expansion coefficient β j = b j,eff/d , we Taylor
expand the pressure contributions up to second order around
β j = 0 and find

PTE ≈ kBT

2πd3

[
γ1βTE − γ2β

2
TE + O

(
β3

TE

)]
,

PTM ≈ − kBT

2πd3

(
3

8
βTM − 99

128
β2

TM + O
(
β3

TM

))
, (13)

with the positive coefficients

γ1 = 3

8
(1 − 4α + 10α2),

γ2 = 99

128

(
1 − 495

99
α + 15α2

)
, (14)

and α = c/(dωp).
The Taylor expansions (13) are accurate when β j � 1.

Notice that this requirement is actually not quite met for the
parameter range considered in Fig. 4(b), as the expansion
coefficients take values in the range 0 � βTE � 0.25 and 0 �
βTM � 0.125. In fact, expressions (13) yield a rather poor ap-
proximation of the numerical curves. A better approximation
can be found using a Padé approximant. We find

PTE ≈ kBT

2πd3

γ 2
1 βTE

γ2βTE + γ1
,

PTM ≈ − kBT

2πd3

6βTM

33βTM + 16
. (15)

The coefficients of the Padé approximants are found by ex-
panding the rational functions around β j = 0 and comparing
the coefficients with the ones from the respective Taylor
expansion (13).

Finally, we can leverage the zero-pressure condition that
holds true for all calculations included in Fig. 4,

P0
TE + P0

TM + Pξ>0 = 0, (16)

along with Eqs. (15) to derive the relation between ε(0) and
μ(0):

μ(0) ≈ 2d

b

Aε(0) + B

Cε(0) + D
, (17)
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FIG. 5. (a) Maximum repulsion Pmax and (b) transition separation
dT as a function of the permeability of the magnetic plate μ(0) for a
few plate thicknesses b.

with A = (6 + 33δ)γ1b/(2d ), B = 16γ1δ, C = [33γ 2
1 − (6 +

33δ)γ2]b/(2d ), D = 16(γ 2
1 − γ2δ), and δ = −2πd3Pξ>0

/(kBT ). The results corresponding to Eq. (17) are shown
by the dashed lines in Fig. 4(b). They agree well with the
numerical data, validating the linear behavior of the results.
The discrepancy between the numerical and analytical results
becomes stronger as dT decreases and is thus most pronounced
for the blue curves with dT = 400 nm. This is expected be-
cause that curve corresponds to the largest values of β j . The
accuracy of the analytical results can be improved by calcu-
lating a Padé approximant of higher order.

It should be noted that the optical properties of bulk ma-
terials likely break down at ∼1 nm thicknesses; however, we
continue to characterize the magnetic plate with the permit-
tivity of bulk YIG, as the purpose of this work is to better
understand the connections between system parameters and
repulsion so that a class of magnetic material candidates can
be identified. Similarly, we exclude anisotropic features and
nonlocal effects that will likely emerge in the optical response
for thin plates, leaving them for future study.

IV. TUNING PLATE THICKNESS AND PERMEABILITY

Both the zero-frequency permeability μ(0) and the plate
thickness b are known to affect the repulsion [20,21,23]. Here,
we use the transition separation dT and maximum repulsion
Pmax [Fig. 3(a)] as metrics to quantitatively explore their effect
and the interplay between these two parameters. In Figs. 5(a)
and 5(b), there is a monotonic decrease in dT and an increase
in Pmax as μ(0) increases. The same relation is seen with a
decreasing thickness b. Our results suggest one should use a
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P
m
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x

(m
P
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µ(0) = 200
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µ(0) = 100

µ(0) = 50

FIG. 6. Maximum repulsion Pmax calculated as a function of
magnetic plate thickness b for a few permeability values μ(0). The
black crosses mark the maxima for each curve.

material with a large permeability and one that is as thin as
possible.

Although Pmax appears monotonic with μ(0), it does not
asymptotically approach ∞ as b → 0. To probe this effect,
we keep μ(0) fixed and vary b (Fig. 6). Pmax increases as
b decreases, eventually reaching a peak, beyond which Pmax

falls towards zero. Further, the peak repulsive pressure shifts
to lower thicknesses, and the descent of Pmax towards zero
becomes more dramatic for larger values of μ(0). This re-
sult shows that there is such a thing as “too thin,” and the
critical thickness where Pmax reaches its peak largely depends
on μ(0).

As expected, Pmax approaches zero as b → 0 because if the
plate thickness goes to zero, the cavity disappears. The initial
increase in Pmax as b is reduced from bulk thickness can be un-
derstood from the different scalings of the TEξ→0 and TMξ→0

pressure contributions with the thickness b. The attractive
TMξ→0 mode diminishes more quickly than the repulsive
TEξ→0 mode with decreasing b, leaving an apparent enhance-
ment of the overall repulsion. This phenomenon is described
within the context of diamagnetic-ferromagnetic material sys-
tems [21], and here, the same argument can be made.

V. THERMAL EFFECTS

Beyond the properties of the magnetodielectric material,
the system temperature can also be used to enhance repulsion.
This phenomenon was initially suspected when considering
that the temperature can be used to modulate the attraction
between two nonmagnetic metals at large separations through
the zero-frequency modes [38]. Unlike cavities formed by
nonmagnetic metal plates, where an enhanced attraction is
seen due to the zero-frequency modes providing attractive
contributions, the zero-frequency TE mode in the metallic-
magnetodielectric system provides a repulsive contribution
and one that dies more slowly with increasing separation
than the corresponding attractive TM mode. This connection
was confirmed within the context of metallic-metamaterial
systems [18].

Here, we investigate how much we can decrease the
transition separation dT using experimentally reasonable
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FIG. 7. Pressure between Au and a 1-nm-thick magnetic plate
calculated as a function of separation with (a) μ(0) = 20 and
(b) μ(0) = 160. Calculations are performed for temperatures of 300,
305, and 310 K.

increases in temperature. The pressure curves in Fig. 7(a)
were calculated using μ(0) = 20 and εR(iξ ) = εYIG(iξ ).
Imposing a modest temperature increase from 300 to 310 K
results in �dT = −36.4 nm. In Fig. 7(b), pressure curves were
again calculated at 300, 305, and 310 K, but this time with
μ(0) = 160. With dT now being much smaller at ∼240 nm,
the shift in the transition separation driven by the 10 K
temperature increase is much smaller at �dT = −5.6 nm.

From these results, although the gains might be modest,
it appears that higher temperatures would be beneficial for
pushing the repulsion to lower separations. One must be care-
ful, however, not to increase the temperature above the Curie
point of the magnetodielectric where the thermal excitations
will destroy the magnetic ordering. Higher temperatures will
also increase the thermal measurement noise [32].

VI. CONCLUSIONS

We have shown how three parameters related to the mag-
netic plate [ε(0), μ(0), and b] and the system temperature
T can be leveraged to enhance and modulate the repulsion
in metallic-magnetodielectric plate systems. Our results con-
cerning the ideality of the magnetic material are consistent
with previous work [20]; however, we show that when the
thickness b is decreased to only a few nanometers, the required
relation between μ(0) and ε(0) for generating repulsion at
large separations is μ(0) = ε(0) and stays linear well into
the submicron separation regime. Further, a large magnetic
permeability [preferably μ(0) > 1000] and a small thickness
(b ∼ 1 nm) can drive repulsion on a millipascal scale within
a few-hundred-nanometer separation regime, although there
is a lower limit on how thin the material can be before
the pressure decreases. Last, high temperatures (but below
the Curie point) are optimal because they can boost the re-
pulsive zero-frequency TE mode contribution.

From this investigation, we identify magnetic van der
Waals materials [39,40] as excellent candidates for these
systems, given their nanometer-scale and even subnanometer-
scale thicknesses. These materials could potentially be used
to generate repulsive Casimir forces in vacuum (or air) using
current techniques [30,32] and even levitated above a Au
sample, similar to the experiment seen in Ref. [41] using a
fluid. Beyond the potential measurement of repulsive forces
in air, subsequent measurements could provide additional
experimental evidence for the appropriateness of plasma or
Drude models when discussing Casimir forces (see, e.g.,
Refs. [42–44]).
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