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The Casimir force acts on nearby surfaces due to zero-point fluctuations of the quantum

electromagnetic field. In the nonretarded limit, the interaction is also known as the van
der Waals force. When the electromagnetic response of the surfaces is anisotropic, a

torque may act on the surfaces. Here, we review the literature and recent developments on

the Casimir torque. The theory of the Casimir torque is discussed in an explicit example
for uniaxial birefringent plates. Recent theoretical predictions for the Casimir torque

in various configurations are presented. A particular emphasis is made on experimental

setups for measuring the Casimir torque.
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1. Introduction

The Casimir force exists between any pair of bodies separated by vacuum.1 Gen-

erated by quantum fluctuations of the electromagnetic field, the force dominates

at submicron separations, thus having practical implications for nano- and micro-

electromechanical systems.2,3 When retardation due to the finite speed of light can
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be neglected, the interaction is also known as the van der Waals force. While the

Casimir force was originally predicted for ideal metal plates at zero-temperature,4

the theory was soon extended to account for thermal fluctuations and boundary con-

ditions imposed by real, homogeneous materials including an intervening medium

between the two plates.5,6

When the two plates are composed of anisotropic materials, the energy of the

Casimir interaction depends on the mutual orientation of their optic axes. Conse-

quently, besides the force appearing in isotropic systems, a torque causes a relative

rotation of the two plates. While the Casimir force can be interpreted as a result

of the radiation pressure of the vacuum modes, the Casimir torque can be given

an interpretation of arising from angular momentum transfer from the vacuum

modes to the plates.7 The Casimir torque in the nonretarded limit was first pre-

dicted in Refs. 8 and 9. Retardation was fully taken into account for the first time

in Ref. 10. Potential applications of the Casimir torque involve controlling rota-

tion of small objects, for example in actuation of nano- and microelectromechanical

systems.

Experimentally it has been difficult to measure the Casimir torque. The problem

of parallelism can be avoided for measuring the Casimir force by replacing one of

the plates by a sphere. However, for anisotropic materials the problem of parallelism

cannot be avoided that simply, due to difficulties in achieving smooth spherical

optically anisotropic materials. Recently, the Casimir torque was measured for the

first time between a birefringent plate and a liquid crystal.11

In this paper, we review the recent developments on the Casimir torque (for

earlier reviews see Refs. 12 and 13). In Sec. 2, we review the theoretical formalism

of the Casimir interaction between two uniaxial anisotropic plates and discuss a few

typical examples. Then, in Sec. 3, theoretical predictions on the Casimir torque in

various systems are reviewed. We summarize the proposed experimental setups on

measuring the Casimir torque in Sec. 4, while in Sec. 5, we review the experimental

result, which verified the existence of the Casimir torque for the first time. Finally,

we give concluding remarks in Sec. 6.

2. Casimir Interaction Between Anisotropic Plates

We review the theoretical formalism for the Casimir interaction between two uniax-

ial birefringent plates. Uniaxial birefringent plates are the simplest example for an

optically anisotropic system as there is only one axis governing the anisotropy. All

other directions are optically equivalent. As depicted in the inset of Fig. 1(a), we

consider two semi-infinite plates separated by a distance d in an isotropic medium

with dielectric function ε3. The theory we present here can be straightforwardly

extended to finite plate thickness or multilayered anisotropic plates using the trans-

fer matrix method.14–16 A flexible open-science software for calculating the Casimir

interaction between anisotropic surfaces of various materials and shapes is also

readily available.17
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Fig. 1. (Color online) Casimir torque between two birefringent plates at a separation d where

the optic axes are at an angle θ. (a) Magnitude of the Casimir torque per area as a function of
separation at θ = π/4 for calcite (quartz) above a barium titanate plate in vacuum shown by the
red (blue) line. The plus and minus indicate the sign of the torque, and the dashed line indicates

a power law proportional to d−2. (b) Casimir torque per area as a function of the angle between
the optic axes at d = 100 nm for the same systems. The Casimir torque corresponding to the

blue line is multiplied by a factor of 10 for visibility. (c) Dielectric functions of calcite, quartz and

BaTiO3 as a function of imaginary frequency ξ. For the birefringent dielectrics, the solid (dashed)
lines correspond to ε‖ (ε⊥).
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The z-axis of our reference system is chosen perpendicular to the plates, and

the x-axis to be aligned with the optic axis of plate 1. The optic axis of plate 2 lies

also in the x-y-plane but is twisted by an angle θ with respect to the optic axis of

the other plate. The dielectric tensors of the two plates are then described by the

matrices

ε1 =


ε1‖ 0 0

0 ε1⊥ 0

0 0 ε1⊥

,

ε2 =


ε2‖ cos2 θ + ε2⊥ sin2 θ (ε2⊥ − ε2‖) sin θ cos θ 0

(ε2⊥ − ε2‖) sin θ cos θ ε2‖ sin2 θ + ε2⊥ cos2 θ 0

0 0 ε2⊥

,
(1)

where the subscripts ‖ and ⊥ denote the components of the dielectric tensor paral-

lel and perpendicular to the optic axes. Note that the components of the dielectric

tensor are in general dispersive and depend on the angular frequencies of the elec-

tromagnetic waves.

Within the scattering formalism,18,19 the Casimir free energy of the system at

temperature T is then given by20,21

F(d, θ) =
kBT

4π2

∞∑
n=0

′
∫ 2π

0

dϕ

∫ ∞
0

dk k log det(1− r1r2e
−2ρ3d), (2)

where the summand is evaluated at imaginary frequencies ξn = 2πnkBT/~ and the

prime indicates that the n = 0 term is weighted by a factor of 1/2. The integration

variables k and ϕ are the radial and angular wave-vector components within x-y-

plane of the plane-waves reverberating between the two surfaces. The imaginary

part of the z-component of the wave vectors in the medium is given by

ρ3 =
√
ε3K2

n + k2 (3)

with the imaginary vacuum wave number Kn = ξn/c.

For each plate i = 1, 2, ri represents the reflection matrix on its surface, and it

can be written as22,23

ri =
1

rD

(
rss,N rsp,N

rps,N rpp,N

)
(4)

with

rsp,N = rps,N = Kn
√
ε3εi⊥ρiρ3(ρi − ρ̃i) sin(2θi),

rss,N = sin2(θi)α̃−γ+ + cos2(θi)α−ν+,

rpp,N = − sin2(θi)α̃+γ− + cos2(θi)α+ν−,

rD = sin2(θi)α̃+γ+ + cos2(θi)α+ν+,

(5)
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where

α± = ρ3 ± ρi,

α̃± = ρ3 ± ρ̃i,

ν± = ε3ρ
3
i ± εi⊥ρiρ̃iρ3,

γ± = εi⊥K
2
n(εi⊥ρ3 ± ε3ρi).

(6)

and

ρi =
√
εi⊥K2

n + k2,

ρ̃i =
√
εi‖K2

n + k2 + (εi‖/εi⊥ − 1)k2 cos2 θi.
(7)

Due to the anisotropy of the plates, the reflection matrices (4) are nondiagonal with

respect to s and p polarization. Because we chose the extraordinary axis of the first

birefringent plate along the x-axis, we have θ1 = ϕ and θ2 = ϕ+ θ when using the

reflection matrices (4) in the formula for the Casimir free energy (2).

Note that formula (2) gives more physical insights compared to Barash’ original

result10,24,25 which is somewhat cumbersome. It has been shown that both formulas

are equivalent.21 An alternative derivation can be found in Ref. 26, which pointed

out a misprint in Refs. 10 and 24. Furthermore, the formula for the Casimir free

energy (2) can be straightforwardly extended for multi-layered systems or plates of

finite thickness by using the corresponding reflection matrix for those interfaces.

The Casimir pressure P (d, θ) between the two plates is given by the negative

derivative of the free energy with respect to separation

P (d, θ) = −∂F(d, θ)

∂d
. (8)

Using Jacobi’s formula from matrix calculus, we can derive an explicit formula for

the Casimir pressure and find

P (d, θ) =
kBT

2π2

∞∑
n=0

′
∫ 2π

0

dϕ

∫ ∞
0

dk kρ3 tr[(1− r1r2e
−2ρ3d)−1r1r2e

−2ρ3d]. (9)

Likewise, a formula for the Casimir torque per unit area

M(d, θ) = −∂F(d, θ)

∂θ
, (10)

can be derived. The formula then reads

M(d, θ) =
kBT

4π2

∞∑
n=0

′
∫ 2π

0

dϕ

∫ ∞
0

dk k tr[(1− r1r2e
−2ρ3d)−1r1∂θr2e

−2ρ3d] (11)

for which the derivative of the reflection matrix on plate 2 with respect to the twist

angle θ is required. From Eq. (4) and using that θ2 = ϕ+ θ, an expression for ∂θr2
can be straightforwardly derived.

In general, the integrals in Eq. (11) have to be evaluated numerically. Under

certain conditions, the formula for the Casimir torque can, however, be simplified

2241011-5
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considerably. For instance, when the retardation of the Casimir interaction can be

neglected and the birefringendhe torque becomes10,24

M(d, θ) ≈ − α

64π2d2
sin(2θ) (12)

with

α = −2πkBT

∞∑
n=0

′ (ε2‖ − ε2⊥)(ε1‖ − ε1⊥)ε23
(ε21⊥ − ε23)(ε22⊥ − ε23)

× log

(
1− (ε1⊥ − ε3)(ε2⊥ − ε3)

(ε1⊥ + ε3)(ε2⊥ + ε3)

)
, (13)

where the dielectric functions are evaluated at the imaginary Matsubara frequencies

iξn. In the above limits, the Casimir torque is thus inversely proportional to the

second power of the separation d and proportional to sin(2θ). As we will see in the

examples below, this behavior is typical even if the limiting criteria are not met

(see results for the Casimir torque in Figs. 1(a) and 1(b)).

To illustrate the Casimir interaction between two anisotropic plates, we consider

a calcite (quartz) plate and a barium titanate plate in vacuum at room temperature

T = 300 K. The dielectric functions of the plates are modeled according to Ref. 24.

The results for the magnitude of the Casimir torque per area as a function of

separation for a fixed twist angle θ = π/4 are depicted as the solid red (blue)

lines in Fig. 1(a). For both configurations, the Casimir torque is asymptotic to the

power law d−2 (dashed line) for short and large separations. For short separations,

retardation can be neglected and the power law is explained by formula (12). When

the separation is large compared to the thermal wavelength λT = ~c/kBT , the

zero-frequency Matsubara contribution for the Casimir torque dominates. Because

for dimensional reasons the in-plane wave vector component k appearing as the

integration variable in Eq. (11) scales inversely proportional to the separation d,

we expect that for separations larger than λT = 7.6 µm at room temperature the

Casimir torque behaves like d−2 in agreement with our observations. It is interesting

to note that the Casimir torque is thus of larger range than the Casimir pressure

which scales as d−3 for large separations.1

While the Casimir torque is always positive for the configuration with quartz,

the torque for the calcite configuration undergoes a sign change from negative to

positive at a separation of about 1.87 µm. A positive torque at the twist angle

θ = π/4 means that it tends to align the optic axes of the two plates, while a negative

torque at the same twist angle rotates the plates such that the optic axes become

perpendicular. The sign of the Casimir torque can be understood by comparing the

components of the dielectric tensors of the two plates. For the two configurations

considered here, Fig. 1(c) shows those components as a function of imaginary fre-

quency. The solid lines (dashed) lines correspond to ε‖ (ε⊥). From Eq. (12), we see

that the sign of each imaginary frequency contribution is proportional to the prod-

uct (ε2‖ − ε2⊥)(ε1‖ − ε1⊥) which is proportional to the product of birefringence of

2241011-6

In
t. 

J.
 M

od
. P

hy
s.

 A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 D
A

V
IS

 o
n 

07
/1

1/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 29, 2022 14:19 IJMPA S0217751X22410111 page 7

2nd Reading

Recent developments on the Casimir torque

the two plates. When the medium is vacuum, i.e. ε3 = 1, the logarithm in Eq. (13)

yields a negative number. Thus, in the examples considered here, the sign of the

Casimir torque is opposite to the sign of the product of birefringence.

At large separations the zero-frequency Matsubara term dominates. Because at

low frequencies the product of the birefringence is negative for both configurations,

the Casimir torque is then positive in both cases. As the separation between the

two plates decreases, higher frequencies contribute to the Casimir interaction. The

sign of the Casimir torque for the configuration with quartz has the same sign over

all separations because the sign of the birefringence of quartz and BaTiO3 is the

same over all frequencies. In contrast, the birefringence of calcite undergoes a sign

change at about 2.7× 1014 rad/s, which explains the change of sign towards shorter

separations for the Casimir torque in the corresponding configuration.

3. Theoretical Predictions

In this section, we review the theoretical predictions made for the Casimir torque in

various proposed systems. Effects of anisotropy of the Casimir interaction between

two surfaces are in general a consequence of either the electromagnetic response of

the material they are composed of or their morphology (see Fig. 2) or possibly a

combination of both. The contributions to the Casimir interaction due to shape and

material anisotropy have been extensively studied in Ref. 27. We split our review

of the theoretical predictions into those two categories in the following.

3.1. Material response anisotropy

While it is generally known that retardation and intervening dielectric media

decrease the Casimir interaction between isotropic surfaces, it has been found in

Ref. 20 that the opposite is true for anisotropic surfaces. As can be seen in Fig. 3(a),

Fig. 2. Optical anisotropy due to the material response or the morphology of the interacting

surfaces. (a) Plates with an anisotropic crystalline structure yield an anisotropic electromagnetic
response. Examples with morphological anisotropy are (b) nanostructured surfaces like lamellar

gratings and (c) cylindrical surfaces. In all examples, a Casimir torque as a function of the sepa-

ration d exists when the objects are misaligned by a relative twist angle θ.
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the Casimir torque between two TiO2 plates is enhanced when retardation is

included in the calculation. Moreover, when water is considered as an intervening

dielectric medium, the Casimir torque can be surprisingly increased by a factor of

two.

The Casimir torque can be also enhanced by more than an order of magnitude

when coating the interacting surfaces with a graphene layer.31 Tunability of the

torque using multilayer stacks of anisotropic media with respect to the relative optic

axes and layer thicknesses has been investigated in Ref. 14.

In Ref. 29, the Casimir torque between two biaxially anisotropically polarizable

slabs of finite thickness is studied. Both optic axes are considered to be within

the planes of the interacting slabs. It is found that, when the polarizabilities along

the two optic axes are equal at a given frequency ωc, the Casimir torque changes

sign at a separation dc∼c/2ωc (see Fig. 3(b)). This effect is illustrated for black

phosphorus and phosphorene, where the sign reversal occurs at separations of tens

of nanometers. A further study showed that the presence of extra charge carriers in

black phosphorus and the presence of an intervening fluid between the plates, can

both enhance the magnitude of the Casimir torque.32

The Casimir torque between two Weyl semimetals has been studied in Ref. 30.

In this system, the Casimir torque is generated by a chiral anomaly in the topo-

logical Weyl semimetals, which is a completely different mechanism compared to

birefringent plates. As one can see from the results depicted on the left of Fig. 3(c),

the chiral anomaly is manifested by showing a sin(θ)-dependence for the torque at

short separations (upper curves), while the typical sin(2θ)-dependence appears for

large separations (lower curves). On the right side of Fig. 3(c), the resulting maxi-

mum value of the Casimir torque is compared to ordinary birefringent plates. It is

found that the magnitudes of the torque are similar, but the large-distance behav-

ior for Weyl semimetals is at least an order of magnitude larger at a separation of

one micron and higher.

In Ref. 33, the Casimir torque and force between uniaxial anisotropic topolog-

ical insulator slabs have been investigated in the nonretarded limit. Interestingly,

it has been found that the Casimir force can be tuned from attractive to repul-

sive depending on the angle between the optic axes of the two slabs. The Casimir

torque in this system is, however, rather small compared to dielectric anisotropic

slabs and thus topological insulator slabs are not suited for measuring the Casimir

torque at this time.

Another interesting set of anisotropic materials that have been studied in the

context of the Casimir torque are photonic topological insulators.34 Not only do

photonic topological insulators have a distinguished optic axis like birefringent crys-

tals, but the axis also possesses a preferred direction. As a consequence the Casimir

torque between photonic topological insulator plates is thus not π-periodic, but

rather 2π-periodic instead. By applying an external magnetic field, the direction

and strength of the torque can be driven allowing control of the relative rotation of

the two plates.
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Fig. 3. (Color online) Predictions for the Casimir torque. (a) Casimir torque between TiO2

plates with water or vacuum as the intervening dielectric medium at a separation of 30 nm (taken
from Ref. 28). The green (black) lines correspond to the results for water (vacuum). The dashed

lines are results in the nonretarded limit (NR) and the solid lines take retardation into account.

(b) Distance-dependent sign reversal of the Casimir torque (taken from Ref. 29). The solid line
shows the Casimir torque between two black phosphorus surfaces (see inset) at the relative angle

θ = π/4. The dashed curve corresponds to the result in the nonretarded limit. (c) Chiral-anomaly-

driven Casimir torque between Weyl semimetals (taken from Ref. 30). Left: Normalized Casimir
torque as a function of twist angle θ for various separations. The labels mark the maximum value

of the torque, which is used on the figure on the right. Right: Maximal Casimir torque as a

function of separation. The result between two Weyl semimetals is depicted as the black line. The
dashed lines correspond to the Casimir torque between various birefringent materials. All results

are calculated at zero temperature.
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When an external magnetic field is applied to a III–IV semiconductor such as

InSb, an optical anisotropy can be induced for the dielectric tensor. Magnetic fields

of 1 T can then lead to Casimir torques between plates of such materials, which

become comparable to that of permanent anisotropic materials.35

Magnetic materials have also been studied in the context of the Casimir torque.

If an isotropic permeability is added to the anisotropic permittivity, the Casimir

torque becomes larger at smaller separations and smaller at larger separations com-

pared to nonmagnetic anisotropic plates.36 The Casimir interaction between plates

where also the permeability is anisotropic has been studied in Ref. 37. A three-layer

structure composed of anisotropic saturated ferrite slabs with such properties has

been studied in Ref. 15. The nontrivial magnetic permeability of the magnetodi-

electric slabs can be tuned by an externally applied magnetic field. It is shown that

this setup can be used to design a switch for the Casimir torque for an anisotropic

plate placed between two other anisotropic plates. When the optic axes of the outer

two plates are perpendicular to each other, the torque acting on the middle plate

from the two outer plates is opposite in sign thus effectively canceling out. On the

other hand, when the optic axes of the outer plates are aligned, the torque on the

intermediate layer is turned on.

It has been further found that the Casimir torque plays a major role in the for-

mation of BaTiO3 mesocrystals in an aqueous solution. Mesocrystals are an aggre-

gate of nanocrystals where crystal axes are aligned. For cubic or spherical BaTiO3

nanocrystals, it has been shown that the attachment of particles with alignment

of their crystal axes is caused by the Casimir torque as the main mechanism when

their size is smaller than 5 nm.38 For larger crystals, the electric dipole–dipole inter-

action dominates.

The application of the theory of Casimir torques to liquid crystals is a further

point of interest. Because of the small elastic constant of nematic liquid crystals, the

Casimir interaction between a birefringent plate causes a distortion of the ordered

structure of the liquid crystal. This effect has been first studied in Ref. 39 in the

nonretarded limit and an experimental proposal was made. More recently, another

experimental proposal for measuring the Casimir torque on liquid crystals was made

including predictions on the torque where retardation was taken into account40

which ultimately lead to the first experimental measurement of the Casimir torque11

(see Sec. 5). In comparison to nematic liquid crystals, the Casimir torque between

a cholesteric liquid crystal and a birefringent plate deviates significantly from the

usual sinusoidal form as a function of the twist angle and decreases more slowly as

a function of separation, potentially allowing for a measurement of the torque at

larger separations.16

3.2. Morphological anisotropy

In the previous section, we have discussed the Casimir torque in a system where

the two interacting surfaces are planar and composed of an anisotropic medium.
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When the interacting surfaces are made of isotropic media, their geometric shapes

can still induce an effective anisotropic electromagnetic response.

For instance, two periodically structured surfaces exhibit a Casimir torque when

the direction of the periods is twisted by an angle θ. In Refs. 43 and 44, the Casimir

torque between two periodically corrugated plates has been studied. It was found

that for corrugation periods and amplitudes typical for Casimir experiments, the

torque is much larger than the one found between planar anisotropic surfaces. For

example, the torque per area at a separation of d = 100 nm is found to be 5.2 ×
10−7 N m−1, which is three orders of magnitude larger than the corresponding

torque between calcite and BaTiO3 as shown in Fig. 1(a). Moreover, the Casimir

torque does not follow the usual sinusoidal behavior as a function of the twist angle

in such systems.

A much larger torque compared to anisotropic planar surfaces has also been

found between two lamellar gratings as depicted in Fig. 2(b). In Ref. 45, such sys-

tem of two infinite lamellar gratings was studied for which the Casimir torque is

obtained per unit area. As a result, the torque between two finite gratings can be

approximated by multiplying the so-obtained result by the area of the interacting

surfaces. This approximation will become valid when the lateral size of the plates is

large enough compared to their separation and the gratings’ characteristic length

scales. Alongside their theoretical predictions, the authors of Ref. 45 proposed an

experimental setup for measuring the Casimir torque between the two nanostruc-

tured plates, which will be discussed in Subsec. 4.3.

Interestingly, it has been found that for finite-sized gratings, the Casimir torque

can be much larger than intuitively expected. In Ref. 41, the Casimir torque between

such finite-sized gratings of circular and square shapes has been studied. The result

for the Casimir torque per area at a fixed separation of d = 100 nm as a function of

the twist angle θ is depicted in Fig. 4(a). While the torque for the infinite system is

always negative in the figure, it undergoes several sign changes for the finite gratings.

At smaller twist angles, the two finite gratings show qualitatively similar behavior

when the number of repetitions n of the period length is equal. It is remarkable that

the maximal torque per area for finite gratings is more than an order of magnitude

larger than for the corresponding infinite system. For instance, the ratio between

the maximal torque per area between the circular (square) grating and the infinite

grating is 60 (50) for n = 10.

The appearance of this giant torque for finite gratings can be understood as fol-

lows. While the grating lines of the interacting surfaces cross each other infinitely

times for infinite gratings at any nonzero twist angle θ 6= 0, the number of crossings

for finite gratings depends on the twist angle. Most crossings occur at a relatively

small angle for which then the torque is maximal. In agreement with the numerical

results shown in Fig. 4(a), the maximal torque should then increase with the num-

ber of repetitions n of the period length as long as the gratings are small enough.

The authors of Ref. 41 argue that the giant torque for finite gratings is reminis-

cent of the fact that the Casimir interaction between infinite gratings undergoes
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Fig. 4. (Color online) Predictions for the Casimir torque between surfaces with morphological

anisotropy. (a) Casimir torque per unit area between rotated gratings as a function of twist angle
θ (taken from Ref. 41). The colored lines correspond to finite gratings while the black dashed lines

correspond to an infinite grating for which the result is multiplied by a factor of 10 for visibility.
The finite systems’ results are shown for n = 5 and n = 10 repetitions of the grating periods.

See text for the dimensions of the gratings. (b) The nonretarded Casimir torque per area between

slabs composed of planar arrays of nanoparticles (see inset) as a function of the twist angle θ at a
separation d = 20 nm (adapted from Ref. 42). The black solid and green curves are the result of an

aligned array of Ag nanospheres (Ag-1) and nanorods (Ag-2) interacting with a BaTiO3 surface,

respectively. The black dashed line is the result for two Ag-1 surfaces (multiplied by a factor of
10) and the red curves with circles represent the results for two Ag-2 surfaces. For a comparison,

the torque between two calcite surfaces is depicted as the star symbols (multiplied by a factor of

100 for visibility). The medium in all scenarios is water.

a critical zero-order transition between a 2D-periodic system at θ 6= 0 and a 1D-

periodic system at θ = 0. This critical zero-order transition between the infinite

gratings exemplifies in the Casimir free energy having a discontinuous jump at θ = 0

which the authors call the θ = 0 anomaly. The Casimir torque associated with this

discontinuous jump in the free energy is then technically infinite, which is coherent

with the observation that the maximal torque increases with the grating size.

A Casimir torque can also appear between cylindrical objects like wires and rods

as depicted in Fig. 2. The Casimir torque between anisotropic cylindrical thin rods

in the nonretarded limit was first studied in Ref. 46. The results are derived from the

interaction between two composite media in which the rods are embedded. When

the composite media are sufficiently dilute, the torque between two individual rods

can be determined by assuming pairwise additivity of the interaction. In a similar

way, the Casimir torque between cylinders and a cylinder and an anisotropic planar

wall were studied in Ref. 47, whereas retardation effects in the theory were included

in Ref. 48. The exact Casimir interaction between two crossed perfectly reflecting

cylinders has been studied in Ref. 49.

Because the torque between semiconducting rods is of longer range than for

metals, carbon nanotubes may be a good candidate for measuring the Casimir

torque between cylindrical objects.50 Composite media with embedded nanorods

may, however, be better suited for an experimental measurement as the torque is
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generally much larger and in particular orders of magnitude larger than for ordinary

anisotropic plates.27,51 As shown in Fig. 4(b), the interaction between a surface

composed of embedded nanoparticles and a birefringent plane also exhibits a strong

Casimir torque.42

Another application of the Casimir torque is that it can mediate an efficient

noncontact transfer of angular momentum between spherical nanoparticles bringing

new opportunities for the control of nanomechanical devices. In Ref. 53, the dynam-

ics of chains of rotating nanoparticles with an arbitrary number of elements has

been studied. It has been shown that synchronization of the nanoparticles’ angular

velocities occurs within seconds for structures with realistic dimensions. Moreover,

exotic behaviors of the chain have been predicted, such as “rattleback”-like dynam-

ics, for which the sense of rotation of a particle changes several times before syn-

chronization, and configurations in which angular momentum is not transferred to

a selected particle. For an externally driven nanoparticle chain, the authors of the

aforementioned article have established a condition for which an efficient transfer

of angular momentum can be achieved.

Plates of isotropic materials can also exhibit a Casimir torque when they are

finite in lateral size and their surfaces are titled with respect to each other. In this

case, the torque on the plates is not a result of the transfer of angular momentum

of the vacuum modes on the plate as in the examples discussed above. The torque

is rather a result of an imbalance of the Casimir force acting on different parts of

the plate. The direction of the torque is in the plane of the tilted plate and the

torque acts in such a way that it increases the tilt. The nontrivial interplay of geom-

etry and temperature for inclined plates has been studied in Ref. 54. The Casimir

torques between titled plates play an important role for electrostatic torsional actu-

ators, which find application in nano- and microelectromechanical systems.55 As

illustrated in Fig. 5(a) the total torque acting on such electrostatic torsional actua-

tors is the sum of torques due to the Casimir force, the electrostatic force, and the

restoring torque Mres of the torsional beam. While the electrostatic force can be

switched off by setting the applied potential to zero, the Casimir force will always

Fig. 5. (a) Schematic setup of an electrostatic torsional actuator. The Casimir force FCas and
electrostatic force Felec act on a plate fixed on a torsional beam. Both forces together with the

restoring torque Mres give rise to the total torque acting on the plate which determines the
dynamics of the actuation. The electrostatic force can be controlled by an applied potential U .
(b) Noncontact gear mediated by the Casimir interaction. The moving rack with velocity vR
induces a velocity vP on the pinion mediated by the Casimir interaction (taken from Ref. 52).
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be present and influence the dynamics of the actuator. A detailed study on the

sensitivity of the materials’ optical properties of single-beam and double-beam tor-

sional Casimir actuators can be found in Refs. 56–58.

Moreover, the idea of using the Casimir interaction for noncontact gears has been

put forward as a periodically corrugated surface induces a torque on a corrugated

cylinder in front of it52 (see Fig. 5(b)). The torque acting on the pinion in this

case is a result of the lateral Casimir force. This concept of noncontact gears has

been further studied for two concentric cylindrical gears.59–62 Such noncontact gears

are by design virtually wear-proof and could help towards making more durable

machine parts in nano- and micromechanical systems.

Furthermore, the Casimir torque can be exploited to induce alignment of ellip-

soidal particles inside spheroids63 or CO2 molecules in front of a graphene plane.64

Such a vertical alignment of CO2 molecules may allow them to pass through a

graphene membrane. This mechanism may be exploited to improve the performance

of CO2 separation membranes useful for an efficient atmospheric CO2 reduction.

4. Proposed Experiments

In the past, several experimental setups to measure the Casimir torque have been

proposed. In this section, we review those proposed experiments. In the following

section, the setup which allowed for a measurement of the Casimir torque for the

first time will be discussed.

4.1. Floating birefringent plate over a barium titanate crystal

In Ref. 24, a system composed of a quartz or calcite disk above a BaTiO3 plate

immersed in ethanol was proposed to measure the Casimir torque. The experimental

setup is depicted in Fig. 6(a). With the intervening liquid, the Casimir interaction

is attractive for separations shorter than a few nanometers, but it is repulsive for

larger separations. This repulsive Casimir force is counterbalanced by the net weight

of the disk leading to a stable equilibrium point at a certain separation. For a disk

with 40 µm diameter and 20 µm thickness, the equilibrium separation was found

to be at about 100 nm for both configurations. This equilibrium separation can be

tailored to experimental needs by changing, for instance, the disk thickness.

Placing the birefringent disk at the equilibrium separation, it can rotate freely

in a sort of frictionless bearing. With a 100 mW laser, the rotation of the disk can

be controlled by transferring the angular momentum of the light to the disk. The

light-induced rotation can be stopped using a shutter and the position of the disk

can be monitored by means of a microscope objective coupled to a CCD camera

for imaging.

Using the laser light, the twist angle between the optic axes of the birefringent

crystals can be rotated until θ = π/4. Once the laser beam is shuttered, the disk

then rotates towards the configuration of minimum energy. The rotational motion
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Fig. 6. Proposed experiments for measuring the Casimir torque. (a) Experimental setup of a
floating quartz or calcite disk in ethanol above a BaTiO3 plate (taken from Ref. 24). Inset: Time

evolution for a starting angle of θ = π/4. (b) Influence of Brownian motion on the Casimir torque
of a floating plate (taken from Ref. 65). Left: experimental setup. Right: computerized tracking

and intensity fluctuations for 10 µm polystyrene sphere from early calibration procedures. From

top to bottom: CCD image and determination of particle centers, tracking of one sphere over 5 s
and intensity fluctuations of scattered light. (c) Three-threaded torsion pendulum for measuring

the Casimir torque. One plate is suspended by the pendulum, while the other is attached to a

piezo-stage (taken from Ref. 45). (d) Top left: Nanorod trapped using an optical tweezer above a
birefringent plate (taken from Ref. 66). Bottom left: relative orientation of the nanorod and the

optic axis of the birefringent plate. Right: Schematic experimental setup for detecting the torsional

(TOR) vibration of the levitated nanorod.

of the disk is then governed by the equation of motion for the twist angle

Iθ̈ +
π

2

R4

d
ηθ̇ = a sin(2θ) (14)

with radius of the disk R, its momentum of inertia I, the viscosity of ethanol

η = 1.2 × 10−3 Ns/m2, the separation between plate and disk d and the Casimir

torque a sin(2θ).

The time evolution can then be estimated by determining a from a fit to the

Casimir torque calculated using formula (11) and solving (14) for θ(t = 0) = π/4

and θ̇(t = 0) = 0. The results for the proposed experimental configuration are
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depicted in the inset of Fig. 6(a). As the motion is overdamped, the disk rotates

slowly towards the angle of minimal energy. After a few minutes, the rotation due

to the Casimir torque can be observed. Because the calcite configuration rotates

quicker, it is more likely to show a noticeable effect in the experiment.

The experiment may be further optimized using other dimensions of the disk or

making the disk heavier to bring the equilibrium separation closer to the plate and

thus increasing the Casimir torque. Another possibility is to use a different liquid

with a smaller viscosity to significantly increase the angular velocity of the disk.

Due to the presence of the intervening liquid, Brownian motion needs to be

taken into account when describing the experimental configuration. The authors of

Ref. 24 argue that for the vertical direction Brownian motion can be neglected as

a displacement of a few nanometers from the equilibrium separation would require

a force of the order of 0.1 nN corresponding to an energy equal to 600 meV, which

is more than one magnitude larger than the thermal energy kBT (about 25 meV

at room temperature). For the rotational motion, the effect of Brownian motion is

more noticeable. While the driving torque for the calcite plate is estimated to be

about 5 times larger than the one associated with thermal fluctuations, Brownian

and quantum electrodynamical torques are of the same order of magnitude for

the quartz plate. An accurate statistical analysis of a large number of experiments

should nevertheless allow an observation of the Casimir torque even in the system

with the quartz disk.

Experimentally, this scheme has proven somewhat difficult as has been pointed

out in Ref. 65. One problem is that within the rather long time scales of tens of

minutes, the disks can easily encounter contaminants causing them to stop float-

ing. Another complication is the alignment of laser optics in real time as the disk

moves.

4.2. Casimir torque in the presence of Brownian motion

The slow rotational speeds due to the damping of the viscous fluid in the proposed

experiment of the previous section make it rather difficult to observe the Casimir

torque. As the second term on the left-hand side of Eq. (14) shows, the damping

term is proportional to the fourth power in the radius of the disk, ∝ R4. The

authors of Ref. 65, thus propose to reduce the surface area of the disks to increase

the rotational speeds. The energy scale of the Casimir torque will then, however,

become comparable to thermal energy kBT . Brownian motion will therefore become

more important as the disk radius decreases. The rotational diffusion coefficient Dr

sets the timescale of the Brownian rotation. For a disk with radius R = 1 µm, it is

given by Dr ' 3kBT/32ηR3 ≈ 0.39 rad s−1 for η = 1.0× 10−3 N s m−2. A wall in

close proximity of the disk will further reduce the value of the rotational diffusion

coefficient.

In the regime where the torque due to thermal fluctuations becomes comparable

to the one due to quantum fluctuations, the disk will no longer rotate smoothly

2241011-16

In
t. 

J.
 M

od
. P

hy
s.

 A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 D
A

V
IS

 o
n 

07
/1

1/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 29, 2022 14:19 IJMPA S0217751X22410111 page 17

2nd Reading

Recent developments on the Casimir torque

back to the configuration of minimal energy. The twist angle between optic axes

will instead fluctuate and sample all angles. The probability distribution p(θ) for

the observation of the twist angle θ is then given by the Boltzmann distribution

p(θ) = α exp(−F(d, θ)/kBT ), (15)

where F(d, θ) is the Casimir free energy (2) and α is a normalization constant such

that
∫
p(θ)dθ = 1. An observation of the angle between the optic axes as a function

of time, allows one to then deduce the probability distribution and from that the

Casimir free energy associated to the torque.

The experimental apparatus proposed to conduct this experiment is depicted

in Fig. 6(b). While in the previous section a repulsive Casimir force was used to

levitate the disk from the birefringent plate, another levitation scheme is suggested

in Ref. 65. The main reason for not using the Casimir repulsion is that its existence

had not been experimentally verified at that time, but only 3 years later.67 Instead

double-layer repulsion was proposed as an adjustable levitation scheme, which is

commonly used in colloidal suspensions. A strong double-layer between the plate

and disk can be induced by adding a surfactant (e.g. sodium dodecyl sulfate (SDS))

to an aqueous solution. The surfactant molecules attach to the interacting surfaces

causing a charge buildup of the same sign on the plate and disk. This results

in a repulsive electrostatic force for which the Debye screening length can then

be adjusted by adding an electrolyte (e.g. NaCl) to the solution. In the aqueous

system, the disk will then reside at an equilibrium separation determined by the

balance between the Casimir force, the double-layer force, and the disk’s weight.

While the Casimir force and the weight of the disk are set by the geometry of the

disk, the double-layer force can be adjusted by changing the electrolyte strength

and concentration. For a circular LiNbO3 disk with radius R = 1 µm and height

h = 0.5 µm above a calcite plate in an aqueous solution with SDS and 5 mM NaCl,

the equilibrium separation is found to be at about 46 nm.

A video microscopy setup as depicted in Fig. 6(b) is suggested to track the disk’s

motion. Placing the disk between crossed polarizers, allows one to determine the

orientation of the optic axis by measuring the intensity of the transmitted light.

The intensity in the setup can be shown to be given by

I ∝ 1

2
[1− 2 cos(2θ)] sin(φ), (16)

where φ = 2πh∆n/λ is the phase retardation due to the birefringent disk with

thickness h and a birefringence of ∆n for light of wavelength λ. For an initial trial

of the experiment, the particle tracking has been explored using 10 µm diameter

spheres in an aqueous solution. The Brownian motion of the spheres was recorded

via a CCD camera attached to an upright microscope. The right part of Fig. 6(b)

shows the tracking and the intensity fluctuations recorded for one particle. As the

spheres are nonbirefringent, the recorded intensity fluctuations are solely due to

scattering from imperfections in the spheres as they undergo Brownian motion.
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4.3. Three-threaded pendulum

In Ref. 45, the Casimir torque between two nanostructured plates has been investi-

gated. It was found that for lamellar gratings with a period of 400 nm, filling factor

of 1/2 and corrugation height of 200 nm at a separation of 100 nm the Casimir

torque per area is 3.5×10−8 N m−1 for a twist angle of about θ ≈ 12.5◦. This value

of the torque is orders of magnitude larger than what is typically observed for planar

anisotropic plates (cf. Fig. 1(b)). Besides the theoretical results, an experimental

setup capable of measuring torques of this order of magnitude was proposed.

The experimental setup depicted in Fig. 6(c) is composed of a marionette (thin

cylindrical plate in plane A) suspended above a substrate (grounded plate). The

relative positioning between the two plates can be controlled using a piezo-stage. At

small enough separations, the two plates essentially interact through the Casimir

energy. While the experiment is proposed for nanostructured plates, it can be used

to measure the Casimir interaction for other systems with a similar magnitude of

the torque. In contrast to the experiments proposed in Subsecs. 4.1 and 4.2, the

interacting plates are in vacuum and not immersed in a liquid.

The marionette is suspended by a separation of ` = 20 cm from a rigid frame

(in plane B) by three threads with a threefold rotational symmetry. The tripod-

like setup has the advantage that its torsional spring constant does not depend on

the intrinsic torsional spring constants of the individual threads. Moreover, if the

separation of the supporting points (symbolic triangles on the left of Fig. 6(c)) on

the marionette and the rigid frame are chosen small enough compared to the mar-

ionette radius, rotational and translational motion of the pendulum can be decou-

pled which is necessary for an observation of the Casimir torque. The decoupling

can be achieved when the characteristic frequencies of the rotational oscillation ωr
are much smaller than the one for the translational oscillation ωt. It can be shown

that for this pendulum geometry those characteristic frequencies are related by

ω2
r/ω

2
t = 2ab/ρ2, where a and b are the separations of the supporting points of the

threat from the symmetry axis in planes A and B, respectively, (see schematic tri-

angles on the left of Fig. 6(c)) and ρ is the radius of the marionette. The decoupling

condition can then be met for the choice of dimensions a = 1 mm, b = 60 µm and

ρ = 5 mm.

With the characteristic frequency of the translational oscillation given by ωt =√
g/`, g being the gravitational acceleration, the rotational frequency is smaller by

a factor of 10 with ωr/2π ≈ 0.08 Hz. The choice of the length scale a gives further

freedom to tune ωr to a specific frequency range. To isolate the rotations from

most of the seismic background, it is important to choose a value for ωr below the

microseismic fundamental mode at ∼0.1 Hz.

The sensitivity of the experimental setup can be estimated through the lim-

itations set by thermal fluctuations. From the Brownian angular noise spec-

trum the minimal detectable torque can be estimated. Assuming critical damp-

ing and low frequencies, the minimal detectable torque is then estimated to be
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δτmin∼
√

4kBTIωr N m/
√

Hz with I being the moment of inertia of the marionette.

With the realistic values of the experimental setup given above and assuming a

typical mass of 0.5 g for the marionette, this corresponds to a value of about

10−14 N m/
√

Hz, which falls well within the theoretical prediction of the theoretical

result obtained for the two nanostructured plates given above.

Having estimated that this experimental setup is capable of measuring the

Casimir torque, the angular change of the suspended plate can be measured with

a weak laser beam reflected on the center of the plate onto a low-noise position-

sensitive detector with a typical sensitivity of a few nrad/
√

Hz. Alternatively, opti-

cal interferometers can be used, which can be made sensitive to both rotational and

lateral displacement of the suspended plate.

It is of particular interest for this experiment that it allows the measurement of

the Casimir torque in vacuum. A major challenge, however, is to maintain paral-

lelism of the two interacting plates. This may be largely overcome by working with

larger plate separations with the trade-off being a reduced Casimir torque intensity.

4.4. Optical tweezer

Another setup allowing the measurement of the Casimir torque in air or vacuum was

proposed in Ref. 66. The proposed experiment consists of a cylindrical nanorod of

200 nm length and 40 nm diameter that is levitated above a birefringent plate using

an optical tweezer. The nanorod is assumed to be made of silica. For the birefringent

plate, barium titanate and calcite are considered in the proposed experiment. The

setup is schematically depicted in Fig. 6(d).

It is demonstrated that the nanorod can be trapped with a linearly polarized,

tightly focused laser beam of wavelength 1064 nm and 100 mW power. The trapping

potential is calculated to be about 2.2 × 104 K · kB at the center of the Gaussian

beam, which is assumed to be 266 nm away from the plate. The trapping is thus

stable against thermal fluctuations, and it is shown that the potential is a few orders

of magnitude larger than the Casimir energy at that separation. At the trapping

separation, the maximal Casimir torque is calculated to be around 3.2×10−25 N m

for barium titanate and around 4.6× 10−24 N m for calcite. The Casimir force for

both plate materials is found to be at about 10−16 N.

The sensitivity of the setup can be estimated through two sources of noise. The

first source is due to thermal fluctuations due to the gas surrounding the nanorod

and the second is due to the recoil of scattered photons from the laser light. While

the former is more relevant at higher pressures of the gas, the latter gives the

main contribution of noise for a high vacuum. It is estimated that the turning

point between these two regimes is at a pressure of about 10−7 Torr. At room

temperature and a pressure of 10−7 Torr, the sensitivity for the Casimir torque is

at about 10−28 N m/
√

Hz and while the sensitivity for the Casimir force is at about

10−21 N/
√

Hz. For measuring times of 1 s, the Casimir torque and force are thus

expected to be measurable within this optical tweezer setup.

2241011-19

In
t. 

J.
 M

od
. P

hy
s.

 A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 D
A

V
IS

 o
n 

07
/1

1/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 29, 2022 14:19 IJMPA S0217751X22410111 page 20

2nd Reading

B. Spreng, T. Gong & J. N. Munday

As the nanorod changes polarization of the laser beam, its angular orientation

can be detected with a polarizing beam splitter (PBS) and a balanced detector.

The static change of polarization due to the birefringent plate can be cancelled by

a tunable waveplate as shown on the right of Fig. 6(d).

The measurement of the Casimir force and torque can be affected by surface

roughness of the probes and the existence of surface patch potentials. Because the

roughness can be controlled to be less than 3 nm by polishing, the Casimir torque

due to surface roughness can be neglected.

While levitated nanoparticles have typically no charge, patch potentials on the

birefringent plate can cause a force or a torque on the nanoparticles due to the

induced dipole. As patch potentials have a fixed position on the plate, it is demon-

strated that the influence of such patch potentials on the measurement of the torque

can be averaged out by sampling at different locations. With only 30 sampling

points along a line, the average torque due to a typical patch potential is shown

to be three orders of magnitude smaller than the value of the Casimir torque. The

influence of roughness and patch potentials can be further minimized by character-

ization of the plate surface through Kelvin force microscopy because an area with

small roughness and patch potential can be chosen for the measurement.

The proposed setup not only potentially allows a measurement of the Casimir

torque in vacuum or across air, but due to its high sensitivity it is capable of

measuring the torque at relatively large separations of more than 200 nm. Moreover,

the system may be used for other high-precision measurements.

5. Experimental Verification

In Ref. 11, the Casimir torque was measured for the first time. The experimental

setup is depicted in Fig. 7(a). The interacting surfaces are a liquid crystal (5CB) and

a solid birefringent plate (CaCO3, LiNbO3, TiO2 or YVO4) separated by isotropic

layers of Al2O3 and FC-4430. The design builds on a previously proposed geome-

try39 and allows a precise optical detecting of the liquid crystal rotation due to the

Casimir torque.40

On the opposite side of the interacting surfaces, the liquid crystal is anchored

with an angle θrub (measured relative to the extraordinary axis of the birefringent

substrate) onto a glass slide. This anchoring is induced by a rubbing a polyvinyl

alcohol (PVA) coating on the glass slide. To eliminate liquid-crystal sticking at the

top and bottom interfaces, FC-4430 is added to the 5CB.

The Casimir torque acts on the 5CB molecules near the solid crystal interface

and induces a rotation through the bulk of the liquid crystal. Using the Oseen–

Frank free energy, one can estimate the restoring torque per unit area of the elastic

bulk to be40

Melastic =
k22∆θ

t
(17)
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Fig. 7. (Color online) Experimental measurement of the Casimir torque. (a) Schematic exper-
imental setup to measure the Casimir torque. (b) Measured Casimir torque at a twist angle of

θ = π/4 between 5CB and four birefringent substrates — CaCO3 (purple), LiNbO3 (red), TiO2

(black) and YVO4 (green) — as a function of separation d. The separation includes the known
Al2O3 thickness and a constant offset of 12 nm due to the surfactant and surface roughness. Solid

lines represent the theoretical prediction of the torque with the shaded region corresponding to the

range of values for the offset between 8 and 16 nm. The different symbols correspond to different
samples of the same materials. (adapted from Ref. 11)

with the elastic constant of the twist k22 ≈ 3.6 pN, the measured thickness of the

liquid-crystal layer t ≈ 50 µm, and the twist angle ∆θ = θrub − θ. As the Casimir

torque and the elastic torque Melastic are at balance, one can deduce the Casimir

torque in the experimental setup by optically measuring the twist angle ∆θ using

polarized microscopy.

The resulting measured Casimir torque has a sin(2θ) dependence. Figure 7(b)

shows the measured maximum Casimir torque at θ = π/4. The experimental values

are given by the filled symbols with corresponding error bars. Different symbols of

the same color correspond to different samples of the same configuration. The solid

lines represent the theoretical prediction based on formula (11) where an additional

offset on the Al2O3 layer of 12 nm is assumed due to the surfactant. The shaded

area corresponds to values of this offset from 8 nm to 16 nm. As can be seen from the

figure, the theoretical predictions and the experimental, measured magnitude of the

Casimir torque and its sign match very well for all the plate materials considered.

6. Conclusions and Outlook

In this paper, we have reviewed the latest progress in the Casimir torque. For uni-

axial birefringent plates, we have discussed the theoretical framework of calculating

the Casimir torque and applied it the interaction between typical anisotropic mate-

rials. Moreover, we have reviewed theoretical predictions of the Casimir torque for

various systems. Earlier proposed setups for measuring the Casimir torque were
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discussed and finally we have reviewed the so far only experimental verification of

the Casimir torque.

Overall the Casimir torque has been less explored than the Casimir force both

on the theoretical and experimental fronts leaving many further opportunities for

an exploration of these unique predictions of quantum electrodynamics.
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